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a b s t r a c t

This paper presents a new safety specification method that is robust against errors in the probability
distribution of disturbances. Our proposed distributionally robust safe policy maximizes the probability
of a system remaining in a desired set for all times, subject to the worst possible disturbance distribution
in an ambiguity set. We propose a dynamic game formulation of constructing such policies and identify
conditions under which a non-randomized Markov policy is optimal. Based on this existence result, we
develop a practical design approach to safety-oriented stochastic controllers with limited information
about disturbance distributions. However, an associated Bellman equation involves infinite-dimensional
minimax optimization problems since the disturbance distribution may have a continuous density. To al-
leviate computational issues,wepropose a duality-based reformulationmethod that converts the infinite-
dimensional minimax problem into a semi-infinite program that can be solved using existing convergent
algorithms. We prove that there is no duality gap, and that this approach thus preserves optimality. The
results of numerical tests confirm that the proposed method is robust against distributional errors in
disturbances, while a standard stochastic safety verification tool is not.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

For safety-critical systems subject to uncertain disturbances,
reachability-based safety specification techniques have been used
to compute the reachable sets and safe sets, which allow one to
verify that a system is evolving within a safe range of operation
and to synthesize controllers to satisfy safety constraints (e.g., Al-
thoff, Le Guernic, and Krogh, 2011; Bertsekas and Rhodes, 1971;
Cardaliaguet, Quincampoix, and Saint-Pierre, 1999; Chen, Herbert,
Vashishtha, Bansal, and Tomlin, 2016; Ghaemi and Del Vecchio,
2014; Girard, 2005; Kurzhanski and Varaiya, 2002; Lygeros, Tom-
lin, and Sastry, 1999;Margellos and Lygeros, 2011;Mitchell, Bayen,
and Tomlin, 2005; Rakovic, Kerrigan, Mayne, and Lygeros, 2006).
These methods assume that disturbances lie in a compact set,
and thus require information only about the support of distur-
bances. However, these techniques often produce conservative
results as no additional information about uncertain disturbances
is used. These deterministic methods are a natural choice when
the data of disturbances are not continuously collected, and thus
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a reliable stochastic model is unavailable for them. Advances in
sensing, communication, and computing technologies as well as
statistical learning and estimation tools make it possible to shift
this paradigm; sensors, data storage and computing infrastructure
can now provide data to help estimate disturbance distributions.
Stochastic reachability analysis tools are based on the assumption
that the probability distribution of disturbances is available and
can be used to reduce the conservativeness of their deterministic
counterpart. However, this assumption is often restrictive in prac-
tice because obtaining an accurate distribution requires large-scale
high-resolution sensor measurements over a long training period
or multiple periods. Furthermore, the accuracy of the distribution
obtained by computational methods is often unreliable as it is
subject to the quality of the collected data, statistical learning or
filtering methods, and prior knowledge. Thus, probabilistic safety
specification tools can lead to the design of an unreliable controller
that may violate safety constraints.

This paper aims to bridge the gap between the two methods
by proposing a distributionally robust safety specification tool. Our
approach assumes that the distribution of disturbances is not fully
known but lies in a so-called ambiguity set of probability distri-
butions. The proposed distributionally robust safe policymaximizes
the probability of a system remaining within a desired set for
all times subject to the worst possible disturbance distribution
in the ambiguity set. Therefore, the probabilistic safe set of the
closed-loop system is robust against distributional errors within
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the ambiguity set. We propose a dynamic game formulation of
constructing distributionally robust safe policies and safe sets (in
Section 2). Specifically, it is a two-player zero-sum dynamic game
in which Player I selects a policy by which the controller can
maximize the probability of safety,while (fictitious) Player II deter-
mines a strategy for the probability distribution of disturbances to
minimize the same probability. Player II’s action space is generally
infinite dimensional since the disturbances may have a continu-
ous density function. Therefore, an associated Bellman equation
involves infinite-dimensional optimization problems that are com-
putationally challenging. Furthermore, the existence of an optimal
control policy is not guaranteed.

The contributions of this work are threefold. First, we char-
acterize conditions for the existence and optimality of a non-
randomized Markov control policy for Player I (in Section 3). This
characterization helps greatly reduce the control strategy spacewe
need to search for because it is enough to restrict our attention
to non-randomized Markov policies. Second, we develop a design
approach to a safety-oriented controller with limited information
about disturbance distributions. This control method can be used
to minimize another cost function while guaranteeing that the
probability for a system being safe for all remaining stages is
greater than or equal to a pre-specified threshold. Third, we pro-
pose a duality-based reformulation method for the Bellman equa-
tion in cases with moment uncertainty (in Section 4). We show
that there is no duality gap in the inner minimization problem
of the Bellman equation, which is an infinite-dimensional mini-
max problem. Using the strong duality result, we reformulate the
Bellman equation as a semi-infinite program without sacrificing
optimality. This reformulation alleviates the computational issue
arising from the infinite dimensionality of the original Bellman
equation because the reformulated Bellman equation can be solved
via existing convergent algorithms for semi-infinite programs.
The distributional robustness of the proposed tool is illustrated
through examples (in Section 5).

We summarize related studies as follows. A probabilistic reach-
ability tool using aMarkov chain approximation has beenproposed
in Hu, Prandini, and Sastry (2005) and Prandini and Hu (2006).
In Prajna, Jadbabaie, and Pappas (2007), barrier certificates are
employed to calculate an upper bound of the probability that a
system will reach a target set. Additionally, Mitchell and Tem-
pleton (2005) propose a toolbox that supports expectation-based
reachability problems by extending the celebrated Hamilton–
Jacobi–Isaacs reachability analysis (Mitchell et al., 2005). For
discrete-time stochastic hybrid systems, an elegant dynamic pro-
gramming approach has been proposed to compute the maximal
probability of safety (Abate, Prandini, Lygeros, & Sastry, 2008).
This method has been extended to stochastic reach–avoid prob-
lems (Summers & Lygeros, 2010), stochastic hybrid games (Ding,
Kamgarpour, Summers, Abate, Lygeros, & Tomlin, 2013), and par-
tially observable hybrid systems (Lesser & Oishi, 2014). However,
all the aforementioned methods are based on the possibly restric-
tive assumption that the probability distribution of disturbances
is completely known. This paper is also closely related to distribu-
tionally robust control; it minimizes the worst-case cost, assuming
that the probability distribution of uncertain variables lies within
an ambiguity set of distributions. A distributionally robust Markov
decision process (MDP) formulation has recently been developed
while focusing on finite-state, finite-action MDPs (Xu & Mannor,
2012; Yang, 2017a; Yu & Xu, 2016). For cases with moment un-
certainty, Van Parys, Kuhn, Goulart, & Morari (2016) investigate
linear feedback strategies in linear–quadratic settings with risk
constraints and propose a semidefinite programming approach.
We extend the theory of distributionally robust control to the case
of continuous state spaces and apply it to safety specifications.

We use the following notation throughout the paper. Given a
Borel space X , B(X) and P(X) represent its Borel σ -algebra and the
set of Borel probability measures on X , respectively. The set Sl

+

denotes the space of l×l symmetric positive semidefinitematrices.
We also let T := {0, 1, . . . , T − 1} and T̄ := {0, 1, . . . , T }.

2. Distributionally robust safe sets and policies

Consider a discrete-time stochastic system of the form

xt+1 = f (xt , ut , wt ) ∀t ∈ T , x0 = x, (1)

where xt ∈ Rn is the state, ut ∈ Rm is the control input, wt ∈ Rl

is the stochastic disturbance, and f : Rn
× Rm

× Rl
→ Rn is

a measurable function. We assume that the disturbance process
{wt}

T−1
t=0 is defined on a probability space (Ω,F,P), and that ws

and wt are independent for any s ̸= t . As mentioned in Section 1,
it is often difficult to obtain full information about the probability
distribution µt of wt . To mathematically model distributional am-
biguity, we assume that µt is not fully known but contained in a
so-called ambiguity set of distributions, denoted by Dt ⊆ P(Rl).

We now briefly discuss admissible control and distur-
bance distribution strategies. Let Ht be the set of histo-
ries up to stage t , whose element takes the form ht :=

(x0, u0, w0, . . . , xt−1, ut−1, wt−1, xt ).1 The set of admissible control
strategies is chosen as Π := {π := (π0, . . . , πT−1) | πt (U(xt )|ht ) =

1 ∀ht ∈ Ht}, where πt is a stochastic kernel from Ht to Rm and
U(xt ) is the set of admissible actions given state xt . Note that this
strategy space is sufficiently broad to contain randomized non-
Markov policies. Considering an adversarial player who chooses
the disturbance’s probability distribution µt , the set of admissible
disturbance distribution strategies is defined as Γ := {γ :=

(γ0, . . . , γT−1) | γt (Dt |he
t ) = 1 ∀he

t ∈ He
t }, where He

t is a set
of extended histories up to stage t , whose element is of the form
he
t := (x0, u0, w0, µ0, . . . , xt−1, ut−1, wt−1, µt−1, xt , ut ). Note that

the distributional constraints in the ambiguity set Dt is encoded in
the strategy space Γ .

2.1. Distributionally robust safety specifications

Our goal is to compute the worst-case probability of a system
remaining in a desired set for all times when the distribution of wt
is not fully knownbut lieswithin an ambiguity set,Dt . To formulate
a concrete safety specification problem,we consider a desired set A
for safety, which is an arbitrary compact Borel set in the state space
Rn. We also introduce the following definitions:

Definition 1 (Probability of Safety). We define the probability that
the system (1) is safe for all t ∈ T̄ given the strategy pair (π, γ )
and the initial value x as

Psafe
x (π, γ ; A) := Pπ,γ

{xt ∈ A ∀t ∈ T̄ | x0 = x},

whichwe call the probability of safety forA.We also define the prob-
abilistic safe set with probability α under (π, γ ) as Sα(π, γ ; A) :=

{x ∈ Rn
| Psafe

x (π, γ ; A) ≥ α}.

This set contains all the initial states such that the probability
that the system stays in the set A is greater than or equal to
α given the strategy pair (π, γ ). This definition generalizes the
probabilistic safe set introduced in Abate et al. (2008) to the case

1 Tomake it practically sound, we assume that the controller is unable to observe
the disturbance’s probability distribution. However, due to Theorem 1, all of our
results and analyses remain valid even when ht includes (µ0, . . . , µt−1).
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