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a b s t r a c t

This paper proposes a new approach based on parameter-dependent linear matrix inequality (LMI) con-
ditions associatedwith a scalar parameter that are sufficient to provide robustH2 andH∞ reduced-order
mode-dependent, partiallymode-dependent ormode-independent filters for discrete-timeMarkov jump
linear systems (MJLS)with time-invariant uncertain transition probabilities. Time-invariant uncertainties
in the state–space matrices of the modes can be handled as well. As main difference with respect to the
existing approaches in the literature, the filter matrices are obtained directly from the slack variables
introduced in the conditions. Moreover, the proposed conditions become also necessary for a particular
choice of the scalar parameter when mode-dependent full-order filters are designed for systems without
uncertainties. Additionally, for precisely known generalized Bernoulli jump systems (i.e., the case where
all the rows of the transition probability matrix are equal), optimal solutions are obtained for both mode-
dependent and mode-independent full-order filters. Examples (including one motivated by a practical
application) are presented to illustrate the proposed approach.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Concerning the design of H2 and H∞ filters for Markov jump
linear systems (MJLS), several results were published in the lit-
erature considering different scenarios for the plant and distinct
formulations for the synthesis conditions. For instance, the syn-
thesis of strictly proper mode-dependent optimal filters was ad-
dressed via coupled algebraic Riccati equations in Costa and Tuesta
(2004) and by means of linear matrix inequalities (LMIs) in Fiora-
vanti, Gonçalves, and Geromel (2008). The problem of designing
H2 mode-independent optimal filters was solved in Fioravanti,
Gonçalves, and Geromel (2015) for the particular case of Bernoulli
jump systems and for generic transition probabilities through
augmented matrices based on the Kronecker product in Costa
and Guerra (2002a, b), treating only the strictly proper case and
formulating the solution in terms of higher orderNn filter matrices
(where N is the number of operation modes and n represents the
number of states of the plant).
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Considering a structure based on the internalmodel of the plant,
H∞ optimal mode-dependent strictly proper filters were given in
de Souza and Fragoso (2003), while necessary and sufficient LMI
conditions were proposed in Gonçalves, Fioravanti, and Geromel
(2009) to provide full-order proper mode-dependent H∞ filters.
In the mode-independent case, the H∞ optimal filtering problem
for Bernoulli jump systems was solved in Fioravanti et al. (2015)
using LMIs. Nevertheless, when the transition probability matrix
associated with the jumps between modes is not precisely known,
only sufficient conditions (i.e., suboptimal results) were published
(Gonçalves, Fioravanti, & Geromel, 2011; Morais, Braga, Lacerda,
Oliveira, & Peres, 2014a; Zhang & Boukas, 2009a). Note that the
extension of the mentioned LMI strategies of optimal H2 and
H∞ filtering to cope with uncertainties is not immediate, since
the optimal filter is obtained from the partitions of the Lyapunov
matrices.

In the particular scenario of network filtering design, one has
to consider the problem of loss of packets containing themeasure-
ment signals. If the process is modeled by a Markov chain, then
the methods mentioned above could be, in principle, useful. How-
ever, most of the existing approaches establish a strong and non-
realistic hypothesis: the probabilities associated to the Markov
chain are precisely known. This assumptionmay not coincide with
the reality, for instance, in the casewhere general purposewireless
networks are employed (as Wi-Fi or EEE 802.15.4), giving rise to
several problems that cannot be neglected, as intense traffic, delay
and packet loss (Angrisani, Bertocco, Fortin, & Sona, 2008). Thus,
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a more realistic assumption is that the transition probability ma-
trix is not precisely known, taking into account the uncertainties
inherent to the communication networks.

Another particular feature of interest that usually arises when
applying stochastic models to networked control systems (NCS)
(Palma, Carvalho, Gonçalves, Galarza, & de Oliveira, 2015) and
transmission of images (Lecuire et al., 2006; Yu, Sahinoglu, & Vetro,
2004) is the generalized Bernoulli distribution, where the success
or failure in the reception of themessages are uncorrelated, i.e., not
depending on the previous transmission. Even in particular cases
where the bit error rate between hops depends on the previous
instant, the loss from source to destination can be considered as a
Bernoulli process (Costa & Guedes, 2012). An advantage of using
these models in the NCS context is that the entries of the probabil-
ity matrix modeling the loss process are directly associated with
the packet loss rate (PLR), a measure available in all communi-
cation protocols (accurate or with some degree of uncertainty).
Particularly in network filtering design, another important issue
that must be taken into account is that the signals composing the
measurement vector (for example, velocity or position of different
objects) can be sent by distinct sources and failure or success of the
reception of each one of them is associated to a distinct operation
mode of the Markov chain. Actually, when the source of the failure
cannot be determined, a simpler alternative is to design filters
independent of theMarkov chain, such that a single filter optimizes
the performance criterion for all the operation modes.

Two classes of LMI based conditions for the design of filters
and controllers in the context of MJLS can be identified in the
literature. As first alternative, one has the design conditions that
provide the optimal H2 or H∞ cost, but having as main drawback
the fact that the synthesized filtermatrices or control gains depend
on the system matrices or probabilities (Fioravanti et al., 2015;
Geromel, Gonçalves, & Fioravanti, 2009; Gonçalves et al., 2009).
In the few situations where these methods can be extended to
cope with uncertainties, the Lyapunovmatrices, used to certify the
closed-loop stability with H2 or H∞ norm bounds, or partitions
of those matrices, must be kept parameter-independent, making
the resulting conditions conservative. On the other hand, boosted
by the so called slack variable paradigm, more recent LMI based
methods (Li, Lam, Gao, & Xiong, 2016; Morais et al., 2014a; Morais,
Braga, Lacerda, Oliveira, & Peres, 2014b) were proposed specially
to treat uncertainties, having as main advantage the fact that the
Lyapunov matrix can be parameter-dependent, in general being
more effective than the previousmethods when dealing withMJLS
affected by time-invariant uncertainties. The drawback in this
case is the non optimality of the conditions if the system under
investigation is not subject to uncertainties. The purpose of this
paper is to close the gap between these two classes of LMImethods,
with special attention to the Bernoulli distribution. More precisely,
this paper proposes new sufficient LMI based conditions of full-
order H2 and H∞ robust filtering that become also necessary for
precisely known discrete-time MJLS considering complete avail-
ability of the operation modes, in the Markov and Bernoulli cases,
and partial or null availability for generalized Bernoulli systems.
In other words, the optimality of the conditions is assured in the
following cases: (i) synthesis of full-order mode-dependent filters
for precisely known MJLS with known transition probability ma-
trix; (ii) synthesis of full-order mode-independent filters for pre-
cisely known MJLS with known generalized Bernoulli distribution
(transition probability matrix with identical rows). The following
main features can be highlighted in the proposed method. The
conditions are generic enough to cope with the design of full- and
reduced-order filters, handling also the uncertain case and mode-
independent MJLS filtering while maintaining characteristics of
low conservativeness when compared to other methods. An im-
portant point is that the construction of the filter matrices is made

only in terms of slack variables, facilitating the task of designing
reduced-order filters. Thanks to these properties, the conditions
can be extended to handle the presence of time-invariant uncertain
parameters in the state–space matrices of the modes. Another
distinction of the proposedmethod is that, differently from similar
approaches (Li et al., 2016; Morais et al., 2014a, b) that use several
unconstrained scalar parameters to obtain filters with improved
performance, the proposed conditions are associated with a single
scalar parameter belonging to a known and bounded interval,
which ease the task of searching for better solutions in terms of
H2 and H∞ performance. The proposed conditions are formu-
lated as parameter-dependent matrix inequalities with a scalar,
becoming robust LMIs (infinite dimensional problems) for fixed
values of the scalar parameter. Thanks to recent software develop-
ments, programmable LMIs based on polynomial approximations
of increasing precision can be automatically constructed using
specialized toolboxes.

The notation used in the paper is summarized as follows. The
set of natural numbers is denoted by N and the nth dimensional
Euclidean space with the usual norm ∥ · ∥ is expressed by Rn. The
fundamental probability space is described by (Ω, F , {Fk} , Γ ).
The finite setwith all theσ Markov operationmodes is represented
by K = {1, . . . , σ } and the mathematical expectation is symbol-
ized by E [·]. The initial probability distribution of theMarkov chain
is µ = [µ1, . . . , µσ ] such that Pr (θ (0) = i) = µi. To deal with
clusters, consider the set Q = {1, 2, . . . , σc}, σc ≤ σ , that contains
the indexes ℓ of system clusters, and the set Uℓ, that gathers the
modes belonging to the cluster ℓ, such that K ≡ ∪ℓ∈QUℓ and
∩ℓ∈QUℓ ≡ ∅. The symbol ′ stands for transpose of a matrix or a
vector. The superscript indexes (·)−1 and (·)−T stand, respectively,
for inverse and inverse transpose of a matrix. In any squarematrix,
⋆ denotes a block induced by symmetry and He(X) is used to
represent the sum X + X ′. The space of discrete-time signals that
are square-integrable is denoted by ℓ2.

2. Preliminaries

A discrete-time MJLS G is described, on the probabilistic space
(Ω, F , {Fk}, Γ ), by the following equations

G =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(k + 1) = A(θk)x(k) + E(θk)w(k)

z(k) = Cz(θk)x(k) + Ez(θk)w(k)
y(k) = Cy(θk)x(k) + Ey(θk)w(k)

k ≥ 0, w ∈ ℓ
nw
2 , E

[
∥x(0)∥2] < ∞, θ0 ∼ µ,

(1)

where x(k) ∈ Rnx is the system state, w(k) ∈ Rnw is the
external perturbation, z(k) ∈ Rnz is the signal to be estimated
and y(k) ∈ Rny is the measured output. The operation modes
of system G given by (θ (k); k ≥ 0) assume values in the finite
state–space K = {1, . . . , σ } which is associated to a transi-
tion probability matrix Γ = [pij], ∀i, j ∈ K, where pij =

Pr (θ (k + 1) = j | θ (k) = i) , ∀k ≥ 0 satisfying the constraints
pij ≥ 0 and

∑σ

j=1pij = 1 for each i ∈ K. For conciseness, the
notation Ai ∈ Rnx×nx , Ei ∈ Rnx×nw , Cz i ∈ Rnz×nx , Ez i ∈ Rnz×nw ,
Cyi ∈ Rny×nx , Eyi ∈ Rny×nw is used whenever θ (k) = i, ∀i ∈ K.

One definition for the stability of the MJLS (1) is the mean-
square stability (MSS), stated as E [∥x(k)∥] → 0 as k → ∞ for
any initial condition x(0) ∈ Rnx , θ0 ∈ K. Necessary and sufficient
conditions to verify MSS in terms of LMIs were demonstrated in
Costa and Fragoso (1993) and Costa, Fragoso, and Marques (2005).

The aim in this paper is to design a fixed-order robust mode-
dependent linear filter described by{

xf (k + 1) = Af (θk)xf (k) + Bf (θk)y(k)
zf (k) = Cf (θk)xf (k) + Df (θk)y(k)

(2)

where xf (k) ∈ Rnf , nf ≤ nx, is the estimated state, zf (k) ∈ Rnz is
the estimated output and the matrices Af i ∈ Rnf ×nf , Bf i ∈ Rnf ×ny ,
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