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ARTICLE INFO ABSTRACT
Article history: This paper considers the backstepping design of observer-based compensators for general linear heterodi-
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rectional hyperbolic ODE-PDE-ODE systems, where the ODEs are coupled to the PDEs at both boundaries
and the input appears in an ODE. A state feedback controller is designed by mapping the closed-loop
system into a stable ODE-PDE-ODE cascade. This is achieved by representing the ODE at the actuated
boundary in Byrnes-Isidori normal form. The resulting state feedback is implemented by an observer for
a collocated measurement of the PDE state, for which a systematic backstepping approach is presented.
The exponential stability of the closed-loop system is verified in the co-norm. It is shown that all design
equations can be traced back to kernel equations known from the literature, to simple Volterra integral
equations of the second kind and to explicitly solvable boundary value problems. This leads to a systematic
approach for the boundary stabilization of the considered class of ODE-PDE-ODE systems by output
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feedback control. The results of the paper are illustrated by a numerical example.
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1. Introduction

In recent years, the backstepping approach (see, e.g., Krstic &
Smyshlyaev, 2008) was utilized to provide systematic solutions for
the boundary stabilization of PDE-ODE systems. At first, PDE-ODE
cascades were considered, where an ODE is coupled to a PDE or
vice versa (see, e.g., Krstic, 2009). A more challenging problem is
the stabilization of coupled PDE-ODE systems, which arise directly
in the modelling if dynamic boundary conditions (BCs) have to be
taken into account (see, e.g., Sagert, Di Meglio, Krstic, & Rouchon,
2013, Tang & Xie, 2011). Recently, the extension of the previous
backstepping results to coupled PDE-ODE systems, where the PDEs
describe a general heterodirectional hyperbolic system, attracted
the attention of many researchers. The interest in this problem
stems from applications including coupled string networks (see,
e.g., Ch. 6 Luo, Guo, & Morgul, 1999), networks of open channels
and transmission lines (see, e.g., Bastin & Coron, 2016). By making
use of the results in Hu, Meglio, Vazquez, and Krstic (2016), a back-
stepping approach for this system class with constant coefficients
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was presented in Di Meglio, Argomedo, Hu, and Krstic (2018).
Subsequently, the work (Deutscher, Gehring, & Kern, 2018) con-
sidered the case of spatially-varying coefficients by making use of
the results in Hu, Vazquez, Meglio, and Krstic (2015). The approach
in Di Meglio et al. (2018) only treats the state feedback controller
design, while in Deutscher et al. (2018) also an observer for an
anticollocated measurement was presented in order to design an
observer-based compensator. For enlarging the applicability of the
backstepping method, it is reasonable to consider ODE-PDE-ODE
systems, where the actuated boundary is described by an ODE with
an input. The latter describes the dynamics of the actuator and
thus leads to a much more involved stabilization problem for the
underlying distributed-parameter system (DPS). A first solution of
this problem for a 2 x 2 hyperbolic system with a fully actuated
ODE at z = 1 is presented in Bou Saba, Bribiesca-Argomedo,
Di Loreto, and Eberard (2017). Therein, a single transformation is
proposed to map the system into a cascade of an ODE and a coupled
PDE-ODE system. The backstepping transformation follows from
a new type of kernel equations, that consists of PDEs coupled
with ODEs. Furthermore, exponential stability of the coupled target
system is shown in the L, sense.

In this paper, the design of observer-based compensators
for general linear heterodirectional ODE-PDE-ODE systems with
spatially-varying coefficients is considered. The input of the system
acts on the ODE appearing at z = 1. Furthermore, a collocated
boundary measurement of the distributed state is assumed for
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the observer design. In order to solve the corresponding output
feedback stabilization problem, the results in Deutscher et al.
(2018) are generalized. Therein, a two-step approach is utilized
to determine the controller for the coupled PDE-ODE system. In
the first step, the DPS is mapped into backstepping coordinates.
As the related target system is of much simpler structure, this
significantly facilitates the decoupling into a stable PDE-ODE cas-
cade in the second step. In the paper this method is applied to
the design of the state feedback controller in order to map the
closed-loop system into an ODE-PDE-ODE system, where the PDE
subsystem is decoupled from the ODE at the unactuated boundary.
The corresponding transformations can directly be obtained by
solving the kernel equations in Hu et al. (2015) and simple Volterra
integral equations of the second kind. As the input acts on the
ODE, the last step for obtaining a stable ODE-PDE-ODE cascade
requires the introduction of new coordinates to represent the ODE
at z = 1 in its multivariable Byrnes-Isidori normal form (see, e.g.,
Isidori, 1995, Ch. 5.1). For this, a vector relative degree of one is
assumed, which is a requirement often met in applications. Typical
examples are hyperbolic flexible structures, where a rigid body is
attached at the actuated boundary. This assumption also includes
the full actuation considered in Bou Saba et al. (2017) as a special
case. On the basis of the resulting Byrnes-Isidori normal form,
the state feedback controller can easily be determined. For its
implementation, a collocated observer is designed. Compared to an
anticollocated observer, this is a much more challenging problem
as the ODE at the unactuated boundary of the observer is, in this
case, subject to a coupling with the PDEs from both boundaries.
By making use of the two-step approach, it is shown that only the
usual observer kernel equations for the PDE subsystem and simple
Volterra integral equations of the second kind have to be solved
for the observer design. The solutions of all other design equations
are obtained explicitly. The separation principle is verified for the
corresponding closed-loop system. This is possible by utilizing the
simple structure of the target systems in order to calculate the
closed-loop solution pointwise in space. On the basis of this result,
the exponential decay of the distributed closed-loop states w.r.t.
the oco-norm, i.e., pointwise in space, is shown. This leads to the
systematic design of observer-based compensators for a large class
of coupled hyperbolic PDEs with dynamic BCs at both boundaries.

The next section presents the formulation of the considered
output feedback stabilization problem. In Section 3, the state feed-
back is designed. In order to implement this controller, Section 4
considers the observer design for a collocated measurement. Sec-
tion 5 is devoted to the stability analysis of the closed-loop system
with the observer-based compensator. The results of the paper are
illustrated by means of a numerical example.

2. Problem formulation

Consider the general linear hyperbolic ODE-PDE-ODE system
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described by

orx(z, t) = A(z)ox(z, t) + A(z)x(z, t) (1a)
x2(0, t) = Qox1(0, t) + Cowo(t), t>0 (1b)
x1(1,t) = Qix2(1, t) + Crwq(t), t>0 (1c)
wo(t) = Fowo(t) 4+ Box1(0, t), t>0 (1d)
w1(t) = Fyw(t) 4+ Bix2(1, t) + Bu(t), t>0 (1e)
y(t) =x(1, ), t>0 (1f)

that consists of n coupled transport PDEs (1a) with the distributed
state x(z, t) = [x'(z, t) x"(z,t)]T € R" and the ODEs (1d)
and (1e) with the lumped states wy(t) € R™ and wq(t) € R". The
inputisu(t) € RP and the collocated measurement is y(t) € R™ with
p+ m=nandp, m > 1. Furthermore, A(z)in (1a) is given by

A(z) = diag(r(2), . . ., An(2)), (2)

where 4; € C'[0,1],i = 1,2,...,n,and A4(z) > --+ > Ay(2) >
0 > Apt1(z) > --- > Ap(2),z € [0, 1]. Moreover, the matrix
A(z) = [Aj(z)] in (1a) satisfies A; € C'[0,1],i,j = 1,2,...,n
and A;(z) = 0,z € [0,1],i = 1,2,...,n. Note, that the latter
condition means no loss of generality (see, e.g., Hu et al., 2016).
The initial conditions (ICs) of (1) are x(z, 0) = xo(z) € R",z € [0, 1],
wo(O) = Wo,0 € R" and w1(0) = Wi € R™,
With the matrices

E; = [15] eR™ and E, = [,?n] e R™M, (3)

the transport in the negative direction of the spatial coordinate
z is described by the states x4(z, t) = ElTx(z, t) € RP while the
remaining states x,(z,t) = EzT X(z,t) € R™ take the transport
in the opposite direction into account. This gives rise to the state
partitioning x(z,t) = col(xy(z, t), x2(z, t)) for the PDE subsys-
tem (1a)-(1c). The PDEs for the states x; are defined on (z,t) €
[0, 1) x R*, while the PDEs for the states x, evolve on (z,t) €
(0, 1] x R™. Hence, the distributed-parameter subsystem (1a)-(1c)
is a heterodirectional system (see Hu et al., 2016). The following
assumptions are imposed:

A1) (Fy, By) is controllable,

A2) (Cy, Fy) is observable,

A3) rankC; = rankB = p,n; > p and
A4) det(C{B) # 0.

—~ o~ o~ —~

The Assumptions (A1) and (A2) are needed for the stabiliza-
tion of the ODE subsystems appearing in the state feedback and
observer design. Moreover, Assumptions (A3) and (A4) are intro-
duced so that a Byrnes-Isidori normal form exists for (Cq, Fq, B1)
(seeSection 3.2)and ny > pisassumed inorder to avoid overactua-
tion, i.e., more inputs than states. Finally, (A4) means that (Cy, Fy, B)
has a vector relative degree equal to one.

This paper is concerned with the backstepping design of an
observer-based compensator, that stabilizes the system (1).

3. State feedback design

In what follows the state feedback controller

u(t) = Klwo(t), w1(t), x(t)] (4)
with the formal feedback operator K is determined by mapping (1)
into a stable ODE-PDE-ODE cascade.
3.1. Decoupling of the PDE subsystem

It is shown in Deutscher et al. (2018) that the backstepping
transformation and the transformation to decouple the PDE sub-
system from the wp-systematz = 0

Xz, t)=x(z,t) —/ K(z, £ )x(¢, t)de = Ta[x(t))(z) (5a)
0

Xz, t) = T, ' [9(0)1(2) + Ni(z)wo(t) (5b)

with

7, ' 9(0)(z) = 9(z, f)+/ Pi(z, £)9(¢, t)d¢ (6)
0
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