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a b s t r a c t

This paper establishes a general analytical framework for continuous-time stochastic control problems
for an ambiguity-averse agent (AAA) with time-inconsistent preference, where the control problems do
not satisfy Bellman’s principle of optimality. The AAA is concerned about model uncertainty in the sense
that she is not completely confident in the reference model of the controlled Markov state process and
rather considers some similar alternative models. The problems of interest are studied within a set of
dominated models and the AAA seeks for an optimal decision that is robust with respect to model risks.
We adopt a game-theoretic framework and the concept of subgame perfect Nash equilibrium to derive
an extended dynamic programming equation and extended Hamilton–Jacobi–Bellman–Isaacs equations
for characterizing the robust dynamically optimal control of the problem. We also prove a verification
theorem to theoretically support our construction of robust control. To illustrate the tractability of the
proposed framework, we study an example of robust dynamic mean–variance portfolio selection under
two cases: 1. constant risk aversion; and 2. state-dependent risk aversion.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic control theory has achieved great success in mod-
eling and providing solutions to lots of physical, biological, eco-
nomical, and financial problems, to name a few. Stochastic optimal
control is the serial control variables that accomplish a desired goal
for the controlled state process with minimum cost or with maxi-
mum reward in the presence of noises (risks). Themost commonly
used approaches in solving stochastic optimal control problems
are Pontryagin’s maximum principle and Bellman’s dynamic pro-
gramming. These two principal approaches and their relationship
are documented in many classic reference books such as Yong and
Zhou (1999).

While stochastic control deals with the existence of risk, robust
stochastic control deals with the existence of ambiguity as well.
Here, the ambiguity refers to the Knightian (model) uncertainty
originating with Knight (1921), who clarified the subtle differ-
ence between risk and uncertainty. Ellsberg (1961) reveals the
inadequacy of utility theory and argues that human beings are
ambiguity-averse; thus our rational decisions should be made
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under conditions of ambiguity. Our lack of knowledge about the ac-
tual state process or estimation error unavoidably introduces am-
biguity into the control problem and it has important implications
for many critical aspects such as risk quantification. We call the
agent fearing ambiguity as ambiguity-averse agent (AAA). The AAA
has certain confidence in a reference model but rather considers
some alternative models. A key to dealing with ambiguity is to
quantify themodelmisspecification given the AAA’s historical data
record; see Anderson, Hansen, and Sargent (2003) for a statistical
method. Following the robust decision rule in Anderson et al.
(2003), Maenhout (2004) andWald (1945) derives robust portfolio
rules in the context of Merton (1971)’s portfolios. Recently, Pun
and Wong (2015) extend the analysis to a general time-consistent
objective functional.

In recent years, there is a growing literature investigating
time-inconsistent stochastic control problems,where the objective
functional contains time-inconsistent terms such that Pontryagin’s
and Bellman’s optimality principles are not applicable. A famous
example is the financial mean–variance (MV) portfolio selection,
pioneered by Markowitz (1952) and further studied in Li and Ng
(2000) and Zhou and Li (2000) for dynamic settings. Some other
examples include endogenous habit formulation in economics and
equilibrium production economy; see Björk, Khapko, and Mur-
goci (2017) and Björk and Murgoci (2014). For a general time-
inconsistent objective functional (see Eq. (4)), Lemma 2 below
reveals the sources of time-inconsistency that violate Bellman’s
principle of optimality. In this paper, we contribute to incorporate
the model uncertainty with time-inconsistency to study a general
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class of robust time-inconsistent stochastic control problems. To
the best of our knowledge, we are the first to establish a gen-
eral, analytical, and tractable framework for such problems. Our
model and objective settings nest many classes of well-known
continuous-time problems, such as Heston (1993), Merton (1971)
and Zhou and Li (2000), as special cases.

In the existing literature, several approaches to handling the
time-inconsistency derive reasonable policies with different fea-
tures, which include but are not limited to the followings:

• Precommitment policy: that optimizes the objective func-
tional anticipated at the very beginning time point and the
controller sticks with this policy over the whole control
period. For example, Li and Ng (2000) and Zhou and Li
(2000) introduced an embedding technique to solve for a
precommitment MV portfolio.

• Equilibrium (time-consistent) policy: that consistently op-
timizes the objective functional anticipated at every time
point in the similar manner of dynamic programming but
using the concept of subgame perfect equilibrium. This
idea is initiated in Goldman (1980) and Strotz (1955). Re-
lated papers include Basak and Chabakauri (2010) for time-
consistent MV portfolio and Björk et al. (2017), Björk and
Murgoci (2014) and Björk, Murgoci, and Zhou (2014) for
more concrete examples.

Some recent alternatives are proposed in Cui, Li, and Shi
(2017), Karnam, Ma, and Zhang (2017) and Pedersen and Peskir
(2017) with different views on dynamic objectives. Loosely speak-
ing, from the perspective of decisionmaking, precommitment pol-
icy emphasizes on global optimality while time-consistent policy
emphasizes on local optimality. However, precommitment policy
is sometimes inferior because its strong commitment leads to
time-inconsistency in efficiency (see Cui, Li, Wang, & Zhu, 2010 for
details and a remedy) and its error-accumulation property brings
huge estimation error (see Chiu, Pun, & Wong, 2017). Moreover,
finding precommitment policy poses analytical challenges for gen-
eral time-inconsistent stochastic control problems. In this paper,
we attack the time-inconsistency with the second approach, to-
gether with robustness, resulting in robust time-consistent policy.
A related work is Zeng, Li, and Gu (2016), which considered similar
mean–variance optimization and it will be compared with this
paper in Section 2.

In this paper, we assume a general continuous-time Markov
stochastic process for the state under the reference model. More-
over, we define alternative models, which are equivalent to the
reference model in terms of probability measure. By the Girsanov
theorem, the link between the reference and alternative models is
characterized by a stochastic process that acts as an adverse control
variate. The agent has a time-inconsistent preference of a general
form and aims to find a time-consistent policy that is robust with
respect to the choice of the alternative model. We use a maximin
formulation as in Wald (1945) to construct robust decision rule
and use the concept of subgame perfect equilibrium to charac-
terize the time-consistent policy. With an extended dynamic pro-
gramming approach derived in this paper, we characterize the
robust time-consistent policy using an extendedHamilton–Jacobi–
Bellman–Isaacs (HJBI) system.Moreover, we introduce and discuss
the choice of ambiguity preference function, which completes a
general analytical framework for a large class of time-inconsistent
stochastic control problems with model uncertainty. To illustrate
the tractability of the proposed framework, we apply it to solve
for robust dynamic mean–variance (MV) portfolio selection under
two cases: 1. constant risk aversion; and 2. state-dependent risk
aversion. For the latter case, we introduce nonhomogeneous Abel’s
differential equations to characterize the robust MV portfolio.

The contribution of this paper is threefold: first, we provide a
rigorous mathematical definition of robust time-consistent policy
and reveal its nature as the perfect equilibrium of subgames of
maximin control problems, i.e. ‘‘games in subgames’’. Second, we
prove a verification theorem that solving the proposed extended
HJBI system is a sufficient condition for robust optimality. The
extended dynamic programming approach and the verification
theorem, derived in this paper, are innovative to the literature
on robust control. Third, we apply the proposed framework to
solve an open problem of robust dynamicmean–variance portfolio
selection under the robustness rule of Anderson et al. (2003). The
analyses cover two economically meaningful cases, which extend
the results in Björk et al. (2014) to robust counterparts. Through
this study, our discussion about the ambiguity preference func-
tion for the general case extends the results in Maenhout (2004)
and Pun and Wong (2015).

The remainder of this paper is organized as follows. Section 2
introduces the reference and alternative models and the robust
time-inconsistent stochastic control problems of our interest. The
main results are in Section 3, where we present an extended
dynamic programming equation for the robust value function and
the extended HJBI system with the verification theorem while a
generalized result and the proofs are documented in the extended
version of this paper (Pun, 2018) due to the page limit. To facilitate
the analysis, Section 3.3 provides a simplification of the HJBI sys-
tem to an HJB system. Section 4 is devoted to robust MV portfolio
analysis and the discussion of the choice of ambiguity preference
function for general problems. Finally, Section 5 concludes and
discusses the future research directions.

2. Problem formulation

We study the problem of our interest with a set of candidate
models, which stem from a reference model with agent’s prelimi-
nary knowledge. Specifically, we suppose the agent does not have
complete confidence in the reference model, and she prefers to
consider alternativemodels perturbed around the referencemodel
and to make a robust decision with respect to the model risk.

2.1. The reference and alternative models

The reference model is defined over a filtered physical probabil-
ity space (Ω,F, {FP

t }t≥0,P), where the filtration {FP
t }t≥0 is gen-

erated by an m-dimensional standard P-Brownian motion W P
t =

(W P
1t , . . . ,W

P
mt )

′. Hereafter, the transpose of a vector or matrix a
is denoted by a′. We consider the p-dimensional controlled state
process within a time horizon T , {Xt}t∈[0,T ], driven by a stochastic
differential equation (SDE)

dXt = µ(t, Xt , ut )dt + σ (t, Xt , ut )dW P
t , (1)

where {ut}t∈[0,T ] is a k-dimensional control process with the con-
straint ut ∈ U(t, Xt ) and µ ∈ Rp and σ ∈ Rp×m are the drift and
diffusion coefficient functions in (t, Xt , ut ) ∈ [0, T ]×Rp

×U(t, Xt ).
Themodel (1) is general asm, p, k can be arbitrary natural numbers
and it nests the stochastic volatility models (Heston, 1993) in
finance and stochastic multi-factor models (Pun, Chung, & Wong,
2015) as special cases.

The alternative models are conceptually defined as the models
that are ‘‘similar’’ to the reference model. In this paper, we employ
the mathematical concept of measure equivalence to character-
ize the ‘‘similarity’’ between models; see Anderson et al. (2003).
Specifically, the alternative measures (models) are induced by a
class of probability measures equivalent to P: Q := {Q|Q ∼ P}.
By the Girsanov theorem, for each Q ∈ Q, there is a Rm-valued
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