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a b s t r a c t

Reproducing kernel Hilbert spaces (RKHSs) have proved themselves to be key tools for the development
of powerful machine learning algorithms, the so-called regularized kernel-based approaches. Recently,
they have also inspired the design of new linear system identification techniques able to challenge
classical parametric prediction error methods. These facts motivate the study of the RKHS theory within
the control community. In this note, we focus on the characterization of stable RKHSs, i.e. RKHSs of
functions representing stable impulse responses. Related to this,working in an abstract functional analysis
framework, Carmeli et al. (2006) has provided conditions for an RKHS to be contained in the classical
Lebesgue spaces L p. In particular, we specialize this analysis to the discrete-time case with p = 1. The
necessary and sufficient conditions for the stability of an RKHS are worked out by a quite simple proof,
more easily accessible to the control community.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Reproducing Kernel Hilbert Spaces (RKHS) were developed in
the seminal works (Aronszajn, 1950; Bergman, 1950) and possess
important properties. They are in one-to-one correspondencewith
the class of positive definite kernels and have also an important
interpretation in the context of Gaussian processes (Aravkin, Bell,
Burke, & Pillonetto, 2015; Kimeldorf &Wahba, 1971; Lukic & Beder,
2001). RKHSs have been introduced within the machine learning
community (Girosi, 1997) leading, in conjunction with Tikhonov
regularization theory (Bertero, 1989; Tikhonov & Arsenin, 1977),
to the development of new powerful algorithms (Cucker & Smale,
2001; Drucker, Burges, Kaufman, Smola, & Vapnik, 1997; Evgeniou,
Pontil, & Poggio, 2000; Schölkopf & Smola, 2001). Many of these
regularized approaches recover an infinite-dimensional function
f from a finite set of noisy measurements yi by optimizing an
objective over a suitable RKHS H . As an example, the so called
regularization networks (Poggio&Girosi, 1990;Wahba, 1990) take
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the form

arg min
f∈H

N∑
i=1

(yi − Li[f ])2 + γ ∥f ∥2
H , (1)

where i,N ∈ N, γ is a positive scalar, Li : H → R is linear
and continuous and ∥ · ∥

2
H is the regularizer given by the RKHS

(squared) norm which restores the well-posedness.
This kind of regularized paradigm has been recently introduced

also in the linear system identification context. In particular, in Pil-
lonetto and De Nicolao (2010), f is thought of as the unknown
impulse response of a linear time-invariant system, yi is the noisy
output and the Li is defined by the convolution between f and the
system input. A key point is to include in the KRHS H the avail-
able system information. For this purpose, Pillonetto & De Nicolao
(2010) has introduced a new RKHS, defined by the so called stable
spline kernel, which embeds both smoothness and exponential
stability. Equippedwith this RKHS, the estimator (1), and its exten-
sions developed in Chen, Andersen, Ljung, Chiuso, and Pillonetto
(2014), Chen, Ohlsson, and Ljung (2012), Pillonetto, Chiuso, andDe
Nicolao (2011), have proved to challenge consolidated approaches
such as classical Prediction Error Methods (PEM) (Ljung, 1999;
Söderström & Stoica, 1989), equipped with the classical model
structure selection methods, e.g., Akaike’s information criterion
and cross validation; see Pillonetto, Dinuzzo, Chen, Nicolao, and
Ljung (2014) for a survey on the interplay between regularization,
machine learning and system identification.
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All of these facts motivate a more careful study of RKHS theory
within the control community. This note is in particular devoted
to characterize all stable RKHSs, i.e. RKHS whose elements are
stable impulse responses (absolutely integrable for continuous-
time case and absolutely summable for discrete-time case). As first
pointed out by Dinuzzo (2015), this problem is connected with
the work (Carmeli, Vito, & Toigo, 2006), which has provided the
conditions for an RKHS to be contained in the classical Lebesgue
spaces Lp. The proof provided in Carmeli et al. (2006) involves
advanced abstract functional analysis concepts and results, e.g., the
measure theory, and is nontrivial to understand. In this paper, we
specialize this analysis to the case p = 1, working in discrete-time
(the function domain is the set of natural numbers). We provide
the necessary and sufficient conditions for the stability of an RKHS
through a quite simple proof, which in contrast with (Carmeli et
al., 2006) only relies on the closed graph theorem and some basic
concepts of weak convergence, e.g. see Megginson (1998), Zeidler
(1995), and thus is more easily accessible to the control commu-
nity.

This note is organized as follows. In Section 2, we provide a
brief introduction to RKHS theory, and in Section 3, we review
the concept of stable RKHSs and their characterizations. We then
provide a simple proof for the characterization of stable RKHSs in
Section 4 and conclude the note in Section 5.

2. Reproducing kernel Hilbert spaces

2.1. RKHSs and their relationship with kernels

We start by recalling some basic facts about RKHSs and in
particular their characterization via the concept of a kernel; see
e.g., Kennedy and Sadeghi (2013, Chapter 10) for systematic treat-
ment.

In the following, f denotes a real function over the domain X .
Recall that a Hilbert space H of functions f is a complete vector
space endowedwith an inner product ⟨·, ·⟩H . AN RKHS is a special
Hilbert space of functions f where it is also assumed that pointwise
evaluations are continuous linear functionals on H . This means
that, for any x ∈ X there exists a scalar A < ∞ (possibly
dependent on x) such that

|f (x)| ≤ A∥f ∥H , ∀f ∈ H . (2)

Then, RKHSs are defined as follows.

Definition 2.1 (RKHS). A Hilbert space of functions f : X → R is
called an RKHS if (2) holds.

A fundamental characterization of an RKHS can be obtained by
the concept of positive semidefinite kernel.

Definition 2.2 (Positive Semidefinite Kernel). A symmetric function
K : X × X → R is called positive semidefinite kernel if, for any
m ∈ N, c1, . . . , cm ∈ R, and x1, . . . , xm ∈ X , it holds that

m∑
i=1

m∑
j=1

cicjK (xi, xj) ≥ 0.

In addition, given a kernel K , we define the kernel section Kx(·)
centered at x ∈ X as the function X → R defined by

Kx(y) = K (x, y), ∀y ∈ X .

The connection between positive semidefinite kernels and
RKHS is illustrated in the next result.

Theorem 2.1 (Moore-Aronszajn). To every RKHS H there corre-
sponds a unique positive semidefinite kernel K , called the reproducing
kernel, such that the reproducing property holds:

f (x) = ⟨f , Kx⟩H , ∀(x, f ) ∈ (X , H ) . (3)

Conversely, given a positive semidefinite kernel K , there exists a
unique RKHS of real valued functions defined over X whose repro-
ducing kernel is K .

Further remarks on the nature of an RKHS are now in order
(details can be found e.g. on p. 35 of Cucker and Smale (2001)).
The Moore-Aronszajn Theorem shows that the Hilbert space H is
completely characterized by its reproducing kernel. In particular,
every RKHS is generated by the kernel sections as follows. First,
consider all the functions of the type

f (·) =

m∑
i=1

ciKxi (·)

for any m ∈ N, ci ∈ R, xi ∈ X and any p ∈ N, di ∈ R, yi ∈ X . All
of the resulting functions form a subspace equippedwith the inner
product ⟨f , g⟩H =

∑m
i=1
∑p

j=1cidjK (xi, yj), inducing the norm

∥f ∥2
H =

m∑
i=1

m∑
j=1

cicjK (xi, xj). (4)

The RKHS associated with K then corresponds to the union of this
subspace and all limits of Cauchy sequences. Summarizing, we
have

• all the kernel sections Kx(·) belong to the RKHS H induced
by K ;

• H contains also all the finite sums of kernel sections along
with some particular infinite sums with finite norm;

• every f ∈ H is thus a linear combination of a possibly
infinite number of kernel sections.

2.2. RKHS of functions defined by sequences

Hereafter, the focus is on RKHS containing impulse responses of
linear discrete-time systems. Since the impulse response is defined
by a sequence of real numbers, we set X = N. Moreover, we use
the following sequence spaces:

ℓ1 =

{
{fi}∞i=1 : ∥f ∥1 =

∞∑
i=1

|fi| < ∞, fi ∈ R
}
,

ℓ2 =

{
{fi}∞i=1 : ∥f ∥2 = (

∞∑
i=1

|fi|2)
1
2 < ∞, fi ∈ R

}
,

ℓ∞ =

{
{fi}∞i=1 : ∥f ∥∞ = sup

i∈N
|fi| < ∞, fi ∈ R

}
,

where fi is the ith element of f with i ∈ N. Also, from now sequence,
impulse response and function are exchangeable terms, with f to
denote both the sequence {fi}∞i=1 and the function N → R (i → fi).
Sometimes, to stress its functional nature, we write f (·).

The particular domain choice makes also all the introduced
kernels maps fromN×N intoR. Given an index i ∈ N, the notation
Ki denotes both the sequence {K (i, j)}∞j=1 and the kernel section
Ki(·) := K (i, ·) centered at i ∈ N.

3. Stable reproducing kernel Hilbert spaces

3.1. Stable kernels and RKHS

The necessary and sufficient condition for a discrete-time linear
time invariant system to be bounded-input bounded-output stable
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