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a b s t r a c t

We consider a class of large-scale systems composed of hierarchically interconnected switched nonlinear
triangular form subsystems affected by external disturbances with arbitrarily varying switching signals.
For any system of this class, we design a decentralized feedback controller which renders the entire large-
scale closed-loop system globally ISS with respect to the external disturbances uniformly and regardless
of the unknown switching signals. To solve the problem, we use a certain modification of the classical
small gain theorems formulated in terms of the ISS Lyapunov functions and combine it with our version
of the backstepping approach with a suitable gain assignment.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of control and stability of nonlinear large-scale and
multi-agent systems has been gaining popularity over the past
15 years and it is important in many applications (Abdessameud,
Tayebi, & Polushin, 2012; Dashkovskiy, Kosmykov, Mironchenko,
& Naujok, 2012; Dashkovskiy, Rüffer, & Wirth, 2007; Liu & Jiang,
2013). The essential characteristics of multi-agent control systems
are autonomy and decentralization: each agent should be self-
aware whereas it is not always possible to observe the entire
system due to its complexity, for instance. This naturally leads to
the problem of decentralized control (Krishnamurthy & Khorrami,
2003; Mehraeen, Jagannathan, & Crow, 2011a, b).

One efficient tool for solving such problems is the small gain
approach based on small gain theorems (Liu & Jiang, 2013).
In Jiang, Teel, and Praly (1994), the classical small gain theorems
for two interconnected systems were obtained, which led to many
fruitful results, e.g. Ito, Pepe, and Jiang (2010) and Karafyllis and
Tsinias (2004). Next significant breakthrough was getting new
small gain theorems for N ≥ 2 interconnected nonlinear sys-
tems (Dashkovskiy et al., 2007; Dashkovskiy, Rüffer, & Wirth,
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2010; Jiang & Wang, 2008), which were extended in various di-
rections (Dashkovskiy et al., 2012; Geiselhart &Wirth, 2015; Liu &
Jiang, 2013).

Another topic, which has been gaining popularity over the past
decade, is motivated by the theory of switched systems (Efimov,
Loria, & Panteley, 2011; Liberzon, Hespanha, &Morse, 1999; Liber-
zon & Morse, 1999; Sun & Ge, 2005) and by some fundamental
results on the uniform stability of switched systems (Mancilla-
Aguilar & Garcia, 2001). It is known that some trajectories of
a switched system can diverge while each constant switching
signal produces some globally asymptotically stable system of
ODE (Liberzon & Morse, 1999). Then, it is natural to explore
whether the classical designs of stabilizers (e.g. backstepping)
can be extended to the problem of uniform stabilization of
switched systems by means of switching-independent stabiliz-
ers (Dashkovskiy & Pavlichkov, 2012; Long & Zhao, 2014; Ma &
Zhao, 2010). Dashkovskiy and Pavlichkov (2012) deal with ‘‘cen-
tralized’’ uniform switching-independent stabilization of large-
scale interconnected switched systems in general triangular form,
i.e., each agent should know all the components of all the states
of the other agents. For switched systems in strict-feedback form
with dynamic uncertainties, the problem of stabilization was tack-
led in Long and Zhao (2014). However, first, Long and Zhao (2014)
deal with interconnections of two switched subsystems only simi-
larly to the classical result from Jiang et al. (1994) devoted to the
ODE case, and, second, Long and Zhao (2014) address stabilization
under certain dwell-time conditions. Contrarily, the main result of
our current work provides the uniform stabilization in presence of
arbitrary switching signals without any dwell-time conditions and
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our tool will be a suitablemodification of Dashkovskiy et al. (2010)
for N ≥ 2 interconnected switched systems. As in many other works
devoted to decentralized control (Krishnamurthy & Khorrami,
2003; Mehraeen et al., 2011a, b), we assume that our network
has a certain specific structure of interconnections. This structure
is the same as in Mehraeen et al. (2011a) and its engineering
motivation is given, for instance, in Mehraeen et al. (2011b).
However, while Mehraeen et al. (2011a, b) deal with ODE systems
without switchings, our problem formulation addresses the case
of uniform, switching-independent ISS stabilization of interconnected
switched systems, which is more general, and our main tool differs
from Mehraeen et al. (2011a, b).

2. Preliminaries and main definitions

Throughout the paper, ⟨·, ·⟩ denotes the scalar product in RN

and |ξ | := ⟨ξ, ξ⟩
1
2 denotes the quadratic norm of ξ ∈ RN . All

vectors fromRN are treated as columns, i.e.,RN ∼= RN×1.A function
α : R+ → R+ is said to be of class K, if it is continuous, strictly
increasing and α(0) = 0, and it is said to be of class K∞ if it is of
class K and unbounded. A continuous function α : R+ → R+ is
said to be positive definite, if α(r) = 0 implies r = 0. A continuous
function β : R+ × R+ → R+ is said to be of class KL if for each
fixed t ≥ 0 we have β(·, t) ∈ K and for each fixed s ≥ 0 we have
β(s, t) → 0 as t → +∞ and t ↦→ β(s, t) is strictly decreasing for
each s > 0 and ∀t ≥ 0 β(0, t) = 0. We say that V : Rn

→ R+

is positive definite if V (x) = 0 ⇔ x = 0 ∈ Rn, and it is radially
unbounded, if, in addition, ∃α ∈ K∞ s.t. ∀ x ∈ Rn V (x) ≥ α(|x|).

Consider the following nonlinear switched system

ẋ(t) = Fσ (t)(t, x(t),D(t)), t ∈ R, (1)

with states x ∈ Rn, piecewise constant switching signals R ∋

t ↦→ σ (t) ∈ {1, . . . ,M}, and external disturbance inputs D(·) ∈

L∞(R;RN ),where each Fσ is continuousw.r.t. (t, x,D) and is locally
Lipschitz continuous w.r.t. (x,D) for each fixed σ ∈ {1, . . . ,M}.
Let us note that our main result and its proof are the same in two
cases: piecewise constant switching signals and just measurable
switching signals. For all (t0, x0) ∈ R × Rn, D(·) ∈ L∞, and
piecewise constant σ (·) by t ↦→ x(t, t0, x0,D(·), σ (·)) we denote
the trajectory of (1) with x(t0) = x0, D = D(t), σ = σ (t).

Definition 1. System (1) is said to be uniformly input-to-state
stable (UISS) (at the origin x∗

= 0 ∈ Rn) if there are β ∈ KL,
and γ ∈ K such that for each t0 ∈ R, each x0 ∈ Rn, each D(·) ∈

L∞(R;RN ) and each piecewise constant t ↦→ σ (t) ∈ {1, . . . ,M}

we obtain

|x(t, t0, x0,D(·), σ (·))| ≤ max {β(|x0|, t − t0),

γ (∥D(·)∥L∞[t0,+∞[)} for all t ≥ t0. (2)

For ODE case, the notion of ISSwas introduced in Sontag (1989)
and Definition 1 for switched systems was given in Mancilla-
Aguilar and Garcia (2001).

Remark 1. It is easy to show that one of the sufficient conditions
for the UISS property is as follows: there are a positive definite and
radially unbounded ISS Lyapunov function V (x) of class C1 and a
gain γ̂ (·) ∈ K s.t.

∀x ∈ Rn
∀t ∈ R ∀D ∈ RN V (x) ≥ γ̂ (|D|) ⇒

∀σ ∈ {1, . . . ,M} ∇V (x)Fσ (t, x,D) ≤ −α(V (x)) (3)

with some continuous and positive definite α(·) : [0,+∞[ →

[0,+∞[. If each Fσ is time-invariant, i.e., ∀σ Fσ = Fσ (x, u), then
one should omit the quantifier ∀t ∈ R in (3) and in Definition 1,
and one can put t0 = 0 in (2).

Fig. 1. Structure of interconnections of system (4) for νi = ν.

Remark 2. By Hadamard’s lemma, we call the following simple
fact: if F ∈ Cµ+1(RN

;R), then F (ξ ) − F (η) = Φ(ξ, η)(ξ − η),
ξ ∈ RN , η ∈ RN , where Φ(ξ, η) =

∫ 1
0 ∇F (η + s(ξ − η))ds is of

class Cµ. (Because F (ξ ) − F (η) =
∫ 1
0

[ d
dsF (η + s(ξ − η))

]
ds.)

3. Main results

We consider a large-scale switched control system in the fol-
lowing form

ẋi,j = fi,j(xi,1, . . . , xi,j+1) +∆i,j,σ (t)(θ, X j,D(t)),
j = 1, . . . , νi − 1,
ẋi,νi = fi,νi (xi,1, . . . , xi,νi , ui) +∆i,νi,σ (t)(θ, Xνi ,D(t));
i = 1, . . . ,N,

(4)

(with νi equations in each ith subsystem) with state vector com-
ponents xi,j ∈ Rmi,j (with mi,j ≤ mi,j+1), controls ui = xi,νi+1 ∈

Rmi,νi+1 , external disturbances D(·) ∈ L∞(R;Rl0 ), piecewise con-
stant switching signals R ∋ t ↦→ σ (t) ∈ {1, . . . ,M} and unknown
parameters θ ∈ R~ , where Xi,p := [x⊤

i,1, . . . , x
⊤

i,p]
⊤ for all p =

1, . . . , νi, i = 1, . . . ,N, and

Xp :=

[X1,min{p,ν1}

...

XN,min{p,νN }

]
for all p = 1, . . . , max

1≤i≤N
νi. (5)

Aswementioned above, some specific restrictions for the structure
of interconnections are needed in such problems. For instance, if
the dynamics of xi,p were allowed to depend on xj,p+1 (j ̸= i) in
(4) then we could not deal even with the problem of asymptotic
stabilization. As a counterexample consider the system ẋ1,1 =

x1,2 − x2,2, ẋ1,2 = u1, ẋ2,1 = x2,2 − x1,2, ẋ2,2 = u2. This system can-
not be asymptotically stabilized even by a ‘‘centralized’’ feedback
because its any trajectory satisfies x1,1(t) + x2,1(t) = const. The
structure of interconnections in (4) for any two subsystems of (4) is
depicted in Fig. 1 and it is the same as in Mehraeen et al. (2011a, b).
(Note that Mehraeen et al. (2011a, b) addressODE systemswithout
any switching signals.) Mehraeen et al. (2011b) provide an explicit
engineering and physical motivation both for our problem formu-
lation and for Mehraeen et al. (2011a, b).

We assume that system (4) satisfies the following conditions:

(I) All the functions fi,j, ∆i,j,σ are of class Cν+1, where ν :=

max1≤i≤N{νi} and fi,j(0) = ∆i,j,σ (θ, 0) = 0 ∈ Rmi,j for every
θ s.t. |θ | ≤ θ∗.

(II) For each i = 1, . . . ,N and each j = 1, . . . , νi,
the function xi,j+1 ↦→ fi,j(xi,1, . . . , xi,j, xi,j+1) is right
invertible, i.e., there is a map (xi,1, . . . , xi,j, w) ↦→

αi,j(xi,1, . . . , xi,j, w) of class Cν with αi,j(0) = 0 such that
fi,j(xi,1, . . . , xi,j, αi,j(xi,1, . . . , xi,j, w)) = w for all xi,1 ∈ Rmi,1 ,
. . . , xi,j ∈ Rmi,j , w ∈ Rmi,j .

(III) There exists some known θ∗
≥ 0 such that |θ | ≤ θ∗.

Our main result is summarized in the following theorem.

Theorem 1. Suppose that system (4) satisfies Assumptions (I)–(III).
Then there exists a decentralized feedback controller in the form ui =

ûi(xi,1, . . . , xi,νi ) of class C1 such that ûi(0) = 0 and such that the
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