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a b s t r a c t

A new formulation of Stochastic Model Predictive Output Feedback Control is presented and analyzed
as a transposition of Stochastic Optimal Output Feedback Control into a receding horizon setting. This
requires lifting the design into a framework involving propagation of the conditional state density, the
information state, and solution of the Stochastic Dynamic Programming Equation for an optimal feedback
policy, both stages of which are computationally challenging in the general, nonlinear setup. The upside
is that the clearance of three bottleneck aspects of Model Predictive Control is connate to the optimality:
output feedback is incorporated naturally; dual regulation and probing of the control signal is inherent;
closed-loopperformance relative to infinite-horizon optimal control is guaranteed.While themethods are
numerically formidable, our aim is to develop an approach to Stochastic Model Predictive Control with
guarantees and, from there, to seek a less onerous approximation. To this end, we discuss in particular
the class of Partially Observable Markov Decision Processes, to which our results extend seamlessly, and
demonstrate applicability with an example in healthcare decision making, where duality and associated
optimality in the control signal are required for satisfactory closed-loop behavior.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Model Predictive Control (MPC), in its original formulation, is a
full-state feedback law. This underpins two theoretical limitations
of MPC: accommodation of output feedback, and extension to in-
clude a cogent robustness theory since the state dimension is fixed.
This paper addresses the first question. There have been a number
of approaches, mostly hinging on replacement of the measured
true state by a state estimate, which is computed via Kalman filter-
ing (Sehr & Bitmead, 2016; Yan & Bitmead, 2005), moving-horizon
estimator (Copp & Hespanha, 2014; Sui, Feng, & Hovd, 2008), tube-
basedminimax estimators (Mayne, Raković, Findeisen, & Allgöwer,
2009), etc. Apart from Copp and Hespanha (2014), these designs,
often for linear systems, separate the estimator design from the
control design. The control problem may be altered to accommo-
date the state estimation error by methods such as: constraint
tightening (Yan & Bitmead, 2005), chance/probabilistic constraints
(Schwarm & Nikolaou, 1999), and so forth.

In this paper, we first consider Stochastic Model Predictive
Control (SMPC), formulated as a variant of Stochastic Optimal
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Output Feedback Control (SOOFC), without regard to computa-
tional tractability restrictions. By taking this route, we establish
a formulation of SMPC which possesses central features: accom-
modation of output feedback and duality/probing; examination of
the probabilistic requirements of deterministic and probabilistic
constraints; guaranteed performance of the SMPC controller ap-
plied to the system. Performance bounds are stated in relation
to the infinite-horizon optimally controlled closed-loop perfor-
mance. We then particularize our performance results to the class
of Partially Observed Markov Decision Processes (POMDPs), as is
discussed explicitly in Sehr and Bitmead (2018). For this special
class of systems, application of our results and verification of
the underlying assumptions are computationally tractable, as we
demonstrate using a numerical example in healthcare decision-
making based on Sehr and Bitmead (2017b).

This paper does not seek to provide a comprehensive survey
of the myriad alternative approaches proposed for SMPC. For that,
we recommend the numerous available references such as Good-
win, Kong, Mirzaeva, and Seron (2014), Kouvaritakis and Cannon
(2016), Mayne (2014) and Mesbah (2016). Rather, we present a
new algorithm for SMPC based on SOOFC and prove, particularly,
performance properties relative to optimality. As a by-product, we
acquire a natural treatment of output feedback via the Bayesian
Filter and of the associated controller duality required to balance
probing for observability enhancement and regulation. The price
we pay for general nonlinear systems is the suspension of disbelief
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in computational tractability. However, the approach delineates a
target controller with assured properties. Approximating this in-
tractable controller by a more computationally amenable variant,
as opposed to identifying soluble but indirect problems without
guarantees, holds the prospect of approximately attracting the
benefits. Such a strategy, using a particle implementation of the
Bayesian filter and scenario methods at the cost of losing duality
of the control inputs, is discussed in Sehr and Bitmead (2017a).
Alternatively, as suggested in Sehr and Bitmead (2017b), one may
approximate the nonlinear SMPC problem by POMDPs and apply
the methods of the current paper directly, resulting in optimality
and duality on the approximate POMDP system. We do this to
demonstrate the feasibility of the methods and to exemplify and
quantify the results claimed.

Comparison with other performance results

Our work is related to four central papers discussing perfor-
mance bounds linking the achieved cost of fully nonlinear MPC
on the infinite horizon with the cost of infinite-horizon optimal
control:

Grüne & Rantzer (2008) study the deterministic, full-state feed-
back situation and provide comparison between the infinite-
horizon optimal cost and the achieved infinite-horizon MPC
cost. In particular, the achieved MPC cost is bounded in terms
of the computed finite-horizon MPC cost.

Hernández & Lasserre (1990) consider the stochastic case with
full-state feedback and average as well as discounted costs.
Their results yield a comparison between the infinite-horizon
stochastic optimal cost and the achieved infinite-horizon MPC
cost in terms of the unknown true optimal cost.

Chatterjee & Lygeros (2015) also treat the stochastic case with
full-state feedback and average cost function. They establish
and quantify a bound on the expected long-run average MPC
performance related to the terminal cost function and its asso-
ciated monotonicity requirement.

Riggs & Bitmead (2012) consider stochastic full-state feedback
as an extension to Grüne and Rantzer (2008) via a discounted
infinite-horizon cost function. Similarly to Grüne and Rantzer
(2008), they establish a performance bound on the achieved
infinite-horizon MPC cost in terms of the computed finite-
horizon MPC cost.

The current paper extends (Grüne & Rantzer, 2008; Riggs &
Bitmead, 2012) to include output feedback stochastic MPC.
Achieved performance is bounded in terms of the computed
finite-horizon MPC cost. The native incorporation of state es-
timation into the problem is the central contribution.

Each of these works relies on a sequence of assumptions
concerning the well-posedness of the underlying optimization
problems and specific monotonicity conditions on certain value
functions which admit the establishment of stability and perfor-
mance bounds.We indicate the universality of this class of assump-
tions in prior performance bounds for MPC.

Main contributions

We summarize the main theoretical/technical contribution of
this paper, Corollary 2, for stochastic MPC with state estimation.
Subject to cost monotonicity Assumption 10, which is testable
in terms of a known terminal policy and the terminal cost func-
tion, an upper bound is computable for the achieved discounted
infinite-horizon SMPC cost in terms of the computed finite-horizon
SMPC cost and other parameters of the monotonicity condition.
The central practical contribution is partially negative, in tying

output feedback performance guarantees to complicated online
algorithms involving the propagation of conditional probability
density functions, but also positive in highlighting the necessity
of duality and probing in order to enhance state observability
and in providing a target optimal controller worthy of close ap-
proximation. The principle theoretical results of MPC are based
on optimal control to yield stability and performance in practice.
There is a strong move in the practice of signal processing and
control towards increasingly onerous realtime computations, such
as Maximum-Likelihood and Particle Filter estimation or scenario-
basedmethods. Likewise, explicitMPC devotes extraordinary com-
puter power to the offline solution of receding horizon optimal
policies.

To illustrate the feasibility of this approach to SMPC in a partic-
ular subset of problems, we provide an example – here a POMDP
from healthcare – in which the assumptions are verifiable and
verified, indicating their substance and thenature of the qualitative
and quantified conclusions regarding closed-loop output-feedback
stochastic MPC. To aid the development, all proofs are relegated to
the Appendix. We write sequences as tm ≜ {t0, t1 . . . , tm}.

2. Stochastic optimal output-feedback control

We consider stochastic optimal control of nonlinear time-
invariant dynamics of the form

xk+1 = f (xk, uk, wk), x0, (1)
yk = h(xk, vk), (2)

where k ∈ N0, xk ∈ Rnx denotes the state with initial value x0,
uk ∈ Rnu the control input, yk ∈ Rny the measurement output,
wk ∈ Rnw the process noise and vk ∈ Rnv the measurement noise.

We denote by

π0|−1 ≜ pdf(x0), (3)

the known a-priori density of the initial state and by

ζ k ≜ {y0, u0, y1, u1, . . . , uk−1, yk}, ζ 0 ≜ {y0},

the data available at time k. We make the following standing
assumptions on the random variables and system dynamics.

Assumption 1. The dynamics (1)–(2) satisfy

1. f (·, u, ·) is differentiable a.e.with full rank Jacobian∀ u ∈ Rnu .
2. h(·, ·) is differentiable a.e. with full rank Jacobian.
3. wk and vk are i.i.d. sequences with known densities.
4. x0, wk, vl are mutually independent for all k, l ≥ 0.

Assumption 2. The control input uk at time instant k ≥ 0 is a
function of the data ζ k and π0|−1.

As there is no direct feedthrough from uk to yk, Assumptions 1
and 2 assure that system (1)–(2) is a controlled Markov process (Ku-
mar & Varaiya, 1986). Assumption 1 further ensures that f and h
enjoy the Ponomarev 0-property (Ponomarev, 1987) and hence that
xk and yk possess joint and marginal densities possibly together
with a finite number of discontinuities, which feature is used in
extending the probability density function calculations to proba-
bility mass functions for POMDPs in Sections 4 and 5. It precludes
the existence of a singular continuous part (Rudin, 1974) of the
measures. Satisfaction of Assumption 1 admits the analysis of the
stochastic behavior using sampling methods such as the Particle
Filter or discrete simulation.
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