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a b s t r a c t

This paper investigates the periodic event-triggered robust output feedback control problem for a class of
nonlinear uncertain systems subject to time-varying disturbance. By means of the feedback domination
approach and disturbance compensation technique, a new framework of periodic event-triggered robust
control strategy is developed in the form of output feedback, which encompasses a discrete-time event-
triggering transmission scheme that is only intermittently monitored at sampling instants and a discrete-
time output feedback controller consisting of a set of linear difference equations. The proposed robust
method may reduce the communication resource utilization as compared to the non-event triggering
schemeswhile maintaining a desirable closed-loop system performance even in the presence of a general
class of time-varying disturbance andnonlinear uncertainties. The closed-loop systemunder the proposed
control scheme is actuallymodeled as a hybrid system, and it is shown that the global practical stability of
the closed-loop hybrid system is guaranteed by selecting a sufficiently large scaling gain and a sufficiently
small sampling period. Finally, the experimental results on a DC–DC buck power converter are presented
to illustrate the effectiveness of the proposed control approaches.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In networked control systems, the bandwidth of communi-
cation network and computation resources are generally lim-
ited (Chen, Ho, & Huang, 2015; Guo, Ding, & Han, 2014; Lehman
& Lunze, 2012; Wang & Lemmon, 2011), therefore the research
on event-triggered control strategy has attracted a great deal of
attentions in recent decades (Liu & Jiang, 2015; Postoyan, Tabuada,
Nešić, & Anta, 2015; Tabuada, 2007; Velasco & Marti, 2003; Xing,
Wen, Liu, Su, & Cai, 2017; Xiong, Yu, Patel, & Yu, 2016). Quite
different from the conventional time-triggered control (Fridman,
Seuret, & Richard, 2004; Khalil, 2004; Mao, Jiang, & Shi, 2010; Qian
& Du, 2012; Zhang, Xin, & Xu, 2013), the main idea of the event-
triggered control is to execute control calculation and communi-
cation tasks only when a pre-defined state-dependent condition is
verified. Instead of only pursuing better control performancewhile
ignoring resources utilization in the time-triggered control, the
aimof event-triggered control is to reduce the resources utilization
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while retaining a satisfactory closed-loop control performance.
Hence, the event-triggered control is more suitable in applications
where low energy consumption is sought, or the communication
is costly or limited (Guo et al., 2014; Mazo & Tabuada, 2011;
Selivanov & Fridman, 2016; Sun, Yu, Chen, & Xing, 2015; Zhu, Jiang,
& Feng, 2014).

Due to the significance claimed above, various event-triggered
control strategies have been developed, such as continuous-time
event-triggered control (Fang & Xiong, 2014; Lunze & Lehmann,
2010; Tabuada, 2007; Xing et al., 2017; Zhang, Feng, Yan, & Chen,
2014), self-triggered control (Anta & Tabuada, 2010; Dimarogonas,
Frazzoli, & Johansson, 2012; Tahir & Mazumder, 2015; Velasco &
Marti, 2003; Wang & Lemmon, 2009) and sampling-based event-
triggered control (Heemels, Donkers, & Teel, 2013; Heemels, Pos-
toyan, Donkers, Teel, Anta, Tabuada, & Nešić, 2015; Peng & Han,
2013; Peng & Yang, 2013; Wang, Postoyan, Nešić, & Heemels,
2016). Compared with the continuous-time event-triggered con-
trol and the self-triggered control, the sampling-based event-
triggered control scheme does not need to continuously monitor
the transmission scheme, and thereby, the Zeno-behavior can be
naturally excluded. Toward that end, the sampling-based event-
triggered control has received considerable attentions of investi-
gations recently. For example, the sampling-based event-triggered
output feedback control can be found in the literatures for linear
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systems (Heemels & Donkers, 2013; Zhang & Feng, 2014), stochas-
tic systems (Wu, Gao, Liu, & Li, 2017). However, it is noticed that
most of aforementioned works are concentrated on linear systems
or nonlinear systems in the absence of disturbances and uncer-
tainties. In practical industrial systems, various disturbances and
plant uncertainties inevitably deteriorate the static and dynamic
performances (Chen, Ballance, Gawthrop, & O’Reilly, 2000; Li &
Liu, 2009; Sun, Yang, Zheng, & Li, 2016). Since the event-triggering
condition is generally in the form of an inequality with respect
to the norm of state or a well-defined state measurement error,
the communication task is possibly executed frequently when the
variation of the testing variable between two successive sampled
instants cannot beneglected owing to the influence of disturbances
and plant uncertainties. Consequently, the disturbances and plant
uncertainties not only deteriorate the closed-loop system per-
formances, but also cause unnecessary waste of communication
resource. It has been reported that evenwhen the disturbances are
extremely small, there may be no positive minimum inter-event
time for event-triggering mechanisms (Borgers & Heemels, 2014).
As such, this paper aims to present an effective periodic event-
triggered robust output feedback control approach for nonlinear
systems particularly subject to nonlinear uncertainties and exter-
nal time-varying disturbance.

By virtue of the disturbance observation/compensation tech-
nique and feedback domination approach, the problem of periodic
event-triggered robust output feedback control is addressed in this
paper for a class of nonlinear uncertain system with time-varying
disturbance. A discrete-time observer consisting of a set of linear
difference equations is put forward with a discrete-time transmis-
sion scheme to determinewhether or not to transmit and compute
the newest state estimates and control signal. The proposed trans-
mission scheme is intermittently monitored at constant sampling
instants. It is shown that the global practical stability of the hybrid
closed-loop system is guaranteed by choosing a sufficiently large
scaling gain and a sufficiently small sampling period.

The research motivations of the proposed approach are three
folds: (1) the uncertain nonlinearities under consideration, which
do not necessarily satisfy the Lipschitz conditions, are different
from most of the existing works on event-triggered control; (2)
since the disturbance observation/compensation technique is uti-
lized, the closed-loop system shows not only strong disturbance
rejection performance, but also the possibility to save communica-
tion resource in the presence of disturbances/uncertainties, and (3)
by accurately discretizing the proposed continuous-time observer,
the proposed robust output feedback controller can be written as
a set of linear difference equations. Such a control design strategy
is intuitive and straightforward for practical implementation via
digital computers.

Even though the state and disturbance observer design and
analysis are straightforward, the stability as well as performance
analysis of the closed-loop hybrid systems consisting of discrete-
time state/disturbance observer, composite control law subject
to event-triggering scheme constraints, and the continuous-time
nonlinear systems suffering from nonlinear uncertainties and
time-varying external disturbance are indeed nontrivial. In par-
ticular, how the controller parameters will affect the stability as
well as the ultimate bounds of the closed-loop hybrid systems
is very crucial for practical controller parameter tuning, and also
quite difficult due to lack of available analysis tools in the presence
of time-varying disturbances and nonlinear uncertainties under
consideration. As such, we strive to investigate the qualitative
relationship between control parameters (including the sampling
period T and the scaling gain h) and the stability of the closed-loop
hybrid systems. Furthermore, the ultimate bounds of the states of
the closed-loop hybrid systems are finally expressed as a function
of the control parameters. This provides an explicit indication on
how the ultimate bounds will vary as the sampling period T and
the scaling gain h change.

Notations

Throughout this paper, the superscript T represents the trans-
pose. The symbol In×n represents the identity matrix with dimen-
sions n × n. The symbols 1n×m ∈ Rn×m and 0n×m ∈ Rn×m stand
for matrices, where all elements are 1 and 0, respectively. The set
of real numbers is denoted by R. The set of nonnegative integers
is denoted by N. For a scalar r ∈ R, its absolute value is denoted
by |r|. Given a vector a = (a1, . . . , an), where ai ∈ R for each
i = 1, . . . , n, diag(a) denotes a diagonal matrix having the entries
of a on the main diagonal. Both the Euclidean norm of a vector and
the corresponding inducedmatrix norm are denoted by ∥·∥. Given
a symmetric matrix P , λM (P) and λm(P) denote the maximum and
minimum eigenvalues of matrix P , respectively.

2. Preliminaries

In this part, some important lemmas are introduced. Firstly,
Gronwall–Bellman Inequality is presented in the following lemma.

Lemma 1 (Apostol, 1974). Let λ : [a, b] → R be continuous and
µ : [a, b] → R be continuous and nonnegative. If a continuous
function w : [a, b] → R satisfies

w(t) ≤ λ(t) +

∫ t

a
µ(s)w(s)ds

for a ≤ t ≤ b, then in the same interval

w(t) ≤ λ(t) +

∫ t

a
λ(s)µ(s)e

∫ t
s µ(τ )dτds.

Using Lemma 1, we have the following result.

Lemma 2. Consider the following system

ζ̇ (τ ) = F (ζ (τ ), ζ (τk)), ∀ τ ∈ [τk, τk+1), τk = kT , k ∈ N, (1)

where F : Rn
× Rn

→ Rn . If F (ζ (τ ), ζ (τk)) satisfies

∥F (ζ (τ ), ζ (τk))∥ ≤ a1∥ζ (τ ) − ζ (τk)∥ + a2∥ζ (τk)∥ + a3(τk), (2)

where a1, a2 are two positive constants, and a3(τk) is a nonnegative
function with respect to τk. Then the following inequality holds

∥ζ (τ ) − ζ (τk)∥ ≤
a2∥ζ (τk)∥ + a3(τk)

a1

(
ea1(τ−τk) − 1

)
,

∀ τ ∈ [τk, τk+1), k ∈ N.

Proof. See Appendix A.1. □

3. Main results

Consider the following dynamic system subject to unmatched
nonlinear uncertainties and time-varying disturbances, depicted
by⎧⎨⎩

ẋi(t) = xi+1(t) + φi(t, x(t), u(t), w(t)), i = 1, . . . , n − 1,
ẋn(t) = u(t) + d(t) + φn(t, x(t), u(t), w(t)),
y(t) = x1(t),

(3)

where x(t) = [x1(t), . . . , xn(t)]T ∈ Rn, y(t) ∈ R and u(t) ∈

R are the state vector, the measurement output and the control
input, respectively. φi (i = 1, . . . , n) are continuous nonlinear
uncertainties with disturbances w(t) ∈ Rm, which are composed
of matched term φn and unmatched terms φi (i = 1, . . . , n −

1). An ‘‘unmatched’’ condition means that the uncertainty enters
the system through different channels from those of the control
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