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a b s t r a c t

The robust stabilization problem for generalized discrete-time systems described by polynomial or
improper transfer functionmatrices, subject to perturbations acting on the normalized coprime factors, is
solved. The maximum achievable stability margin and the robust stabilizing controller are given in terms
of realizations and solutions to appropriate Riccati equations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Since any mathematical model of a real-life process is inher-
ently an approximation, designing a closed-loop controller that
achieves robust stability subject to unstructured model perturba-
tion is an old and central problem in control theory. The novelty
of this paper is to consider the robust stabilization problem for
the general class of linear discrete-time systems described by
transfer matrices which are allowed to be polynomial or improper.
Such systems are alternatively known as generalized, algebraic-
dynamical, singular, or descriptor, and theyplay an important part in
modern control theory, like in the behavioral approach to open and
interconnected systems (Willems&Polderman, 1997)which relies
on polynomial models, in model predictive control (Rawlings &
Mayne, 2009) which involves optimization over future inputs, or
in the algebraic analysis and synthesismethods in linearmultivari-
able control (Rosenbrock, 1970; Vardulakis, 1991)which are based
on polynomial matrices. From a practical engineering viewpoint,
generalized systems provide a great tool for modeling general
physical processes as those containing algebraic (non-dynamic)
constraints, reversed-time dynamics, or hysteresis (see Blajer,
1992; Dai, 1989; Tolsa & Salichs, 1993). Mass (gas, water, etc.)
transportation networks (Offner, Baum, & Kolmbauer, 2016),
power and electrical systems (Gunther & Feldmann, 1999; Riaza,
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2008), control of robots (Rabier & Rheinboldt, 2000), mechanical
systems featuring algebraic constraints (Lind & Schmidt, 2002,
chap. 10), and cyber–physical systems under attack (Pasqualetti,
Dorfler, & Bullo, 2013) are a couple of examples in which general-
ized models are key.

The robust stabilization problemhas different formulations and
has received various solutions according to the class of models
and the way in which the uncertainty acts on the nominal plant,
additive (Glover, 1986), multiplicative (Stoorvogel, 1996), or on
coprime factors (McFarlane & Glover, 1989). Themost general and
elegant solution for the class of proper linear systemswas obtained
for the case of additive stable perturbations on the factors in a co-
prime factorization of the plant, since this family of perturbations
is particularly suited for feedback system analysis and contains
the other types of uncertainties as particular cases (Vidyasagar,
1985). In McFarlane and Glover (1989), a simple formula for
the maximum stability margin together with a characterization of
controllers for the normalized coprime factorization of a standard
(proper) linear continuous-time system is given in terms of explicit
state-space realizations. The discrete-time counterpart of these
results for a proper system was obtained in Ionescu, Oară, and
Weiss (1999).More recently, robust controllers have beenobtained
for various classes of models, e.g., nonlinear (Wei & Lin, 2016),
stochastic (Kou & Li, 2017), or switched (Wang & Xiang, 2009).

For the class of generalized discrete-time systems subject to
additive stable perturbations on the coprime factors we extend
the approach in Ionescu et al. (1999) and obtain for the first
time numerically-sound realization-based formulas for the stabil-
ity margin and for the robust stabilizing controller. Our technical
tools and derivations are essentially based on centered realizations
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introduced in Rakowski (1992) and used in Rakowski (1994) to
parameterize the disturbance decoupling controllers for a proper
system. By deriving formulas that have essentially the same sim-
plicity as in the standard proper case (Ionescu et al., 1999; Mc-
Farlane & Glover, 1989), we further demonstrate the versatility of
centered realizations in approaching robust control problems for
this general class of systems. The simplicity of the formulas is due
to the use of this particular type of centered realization and could
not have been recovered by generalized state-space realizations
(Verghese, Levy, & Kailath, 1981; Verghese, Van Dooren, & Kailath,
1979) which are normally involved in the study of this class of
singular systems.

The paper is organized as follows. Notation, definitions, and
preliminary results are given in Section 2. The robust stabilization
problem is formulated and its solution given in Section 3, while all
technical proofs are deferred to the Appendix. Section 4 demon-
strates our results on a relevant numerical example. Section 5
contains several conclusions.

2. Preliminaries

2.1. General notation and definitions

Denote by C, C := C ∪ {∞}, D, ∂D, C−, C+, jR, jR := jR ∪ {∞}

the complex plane, the extended complexplane, the openunit disk,
the unit circle, the open left-half plane, the open right-half plane,
the imaginary axis, and the extended imaginary axis, respectively.

For amatrix A ∈ Cp×m, A∗ is its conjugate transpose and σmax(A)
is its maximum singular value. If A is square, ρ(A) denotes its
spectral radius. The p × m matrix polynomial A − λE is called
a (matrix) pencil, where λ is a variable in C. The pencil is called
regular if it is square and det(A−λE) ̸≡ 0.Λ(A−λE) is the union of
generalized eigenvalues (finite and infinite, multiplicity counting)
of the regular pencil A − λE (see for example Gantmacher, 1960).

Throughout the paper a linear dynamical system, withm inputs
and p outputs, is formally described by its transfer function matrix
(TFM)

H(λ) =

[
aij(λ)
bij(λ)

]
i=1,p

j=1,m

, (1)

with aij(λ) and bij(λ) scalar polynomials with coefficients in C. The
focus of this paper is on generalized systems whose TFMs may be
improper, i.e., deg aij > deg bij, or polynomial, i.e., bij ≡ 1, for some
i, j. Denote the set of all p × m complex TFMs by Cp×m(λ).

Let Ω ⊂ C denote either D or C−, and ∂Ω its boundary, i.e.,
either ∂D or jR. We say that a system H(λ) is Ω-stable provided
all its poles are in Ω . We shall denote the ring of all Ω-stable TFMs
withRH∞(Ω). LetRL∞(∂Ω) (⊃ RH∞(Ω)) be the Banach space of
complex p×m TFM bounded on ∂Ω , having theH∞ norm defined
as ∥H∥

∂Ω
∞

:= supω∈∂Ωσmax

(
H(ω)

)
(for more details see Section 4.3

in Zhou, Doyle, and Glover, 1996).

2.2. Realizations for generalized systems

An alternative representation of linear dynamical systems,
prone to numerically-sound computations, is through realizations.
Precisely as for the solution in the standard case (Ionescu et al.,
1999; McFarlane & Glover, 1989), we use appropriate realizations
as amain vehicle to obtain reliable analytical formulas. Generalized
systems are usually represented by so-called generalized state-
space realizations (see Dai, 1989; Verghese et al., 1981)

H(λ) = C(λE − A)−1B + D =:

[
A − λE B

C D

]
, (2)

where A − λE is a regular n × n pencil and all the intervening
constant matrices A, E, B, C,D have complex elements and appro-
priate dimensions. Generalized state-space realizations can cope
with the presence of poles at ∞ and are an extension of standard
realizations. Although (2) is suited to represent any TFM model it
has a couple of drawbacks for the problems under investigation:
if ∞ is a pole of H(λ) then the order n of the realization (2) is
strictly greater than the McMillan degree of H(λ), minimality of
a realization is not equivalent to controllability + observability,
two realizations having minimal order are not necessarily related
by an equivalence transformation, and starting from an arbitrary
realization one cannot in general obtain a minimal one by unitary
transformations only (Dai, 1989; Van Doreen, 1981b; Verghese et
al., 1981, 1979).

To circumvent these shortcomings, wewill work with a slightly
more general type of realization, called centered, introduced
in Rakowski (1992). To define a centered realization fix first a
λ0 ∈ C, and further α, β , such that if λ0 = ∞ then α = 1 and
β = 0, and if λ0 ∈ C then α

β
= λ0. A realization centered at λ0 is a

representation

H(λ) = D + C(λE − A)−1B(α − βλ) =:

[
A − λE B

C D

]
λ0

, (3)

where A − λE is a regular pencil, A, E ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n,
and D ∈ Cp×m. In particular, if λ0 = ∞ we drop the index
λ0 from (3) and get precisely the notation and representation in
(2). Therefore, realizations (2) are simply realizations centered at
λ0 = ∞. The positive integer n is called the order of the realization
(3). For an improper or polynomial TFM the matrix E is always
singular, with rank E < n. The realization (3) (or the pair (A −

λE, B)) is called controllable at λ ∈ C if rank [A − λE B] = n, and
is called controllable at ∞ if rank [E B] = n. Analogously, (3) is
called observable (or the pair (C, A − λE) is observable) at a certain
λ ∈ C provided the pair (A∗

− λE∗, C∗) is controllable at λ. A
realization (or a pair) is called controllable (observable) provided
it is controllable (observable) ∀λ ∈ C. A realization (3) (or the
pair (A − λE, B)) is called Ω-stabilizable if it is controllable for all
λ ∈ C \ Ω . Analogously, the pair (C, A− λE) is called Ω-detectable
if (A∗

−λE∗, C∗) is Ω-stabilizable. The realization is calledminimal
if its order is as small as possible among all realizations centered at
the given λ0.

The key features of centered realizations are revealed by choos-
ingλ0 different fromany pole ofH(λ)— a choice in force henceforth
in the paper. In this case, one recovers all nice properties of stan-
dard realizations (Rakowski, 1992), eliminating therefore all the
aforementioned drawbacks of generalized state-space realizations
of type (2): the order of aminimal realization (3) equals theMcMil-
lan degree of H(λ); minimality of a realization (3) is equivalent to
controllability plus observability; D = H(λ0); any two minimal
realizations

H(λ) =

[
A1 − λE1 B1

C1 D1

]
λ0

=

[
A2 − λE2 B2

C2 D2

]
λ0

are related by an equivalence transformation defined by invertible
matrices Q , Z , such that

A2 − λE2 = Q (A1 − λE1)Z, B2 = QB1, C2 = C1Z; (4)

starting from any realization (3) one can always extract a minimal
one by using unitary transformations only.

An additional feature of centered realizations is the easiness in
obtaining them, similar to the standard case, see (Rakowski, 1992)
for a method to get directly a realization (3) starting from the TFM
(1), and Section 5 in Oară and Sabău (2009) for a procedure to
switch back and forth between realizations (2) and (3).
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