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a b s t r a c t

This paper is concernedwith the necessary and sufficient conditions for the Pareto optimality in the finite
horizon stochastic cooperative differential game. Based on the necessary and sufficient characterization
of the Pareto optimality, the problem is transformed into a set of constrained stochastic optimal control
problems with a special structure. Utilizing the stochastic Pontryagin minimum principle, the necessary
conditions for the existence of the Pareto solutions are put forward. Under certain convex assumptions,
it is shown that the necessary conditions are also sufficient ones. Next, we study the indefinite linear
quadratic (LQ) case. It is pointed out that the solvability of the related generalized differential Riccati
equation (GDRE) provides the sufficient condition under which all Pareto efficient strategies can be
obtained by the weighted sum optimality method. Two examples shed light on the effectiveness of
theoretical results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Game theory (Basar & Olsder, 1999; Neumann & Morgenstern,
1944) deals with the problem of cooperation or competition be-
tween/among players, whose key feather is the presence of two
or more players in a situation where each player designs his/her
strategy by taking into account the decisions of the other players. It
has been widely applied to study various problems in many fields,
such as industry, economics, ecology, management, see Dockner,
Jørgensen, Long, and Sorger (2000) and the references therein.
In general, according to whether the players can reach a bind-
ing agreement, the game is divided into cooperative game and
noncooperative game. In a noncooperative game, the players act
independently in the pursuit of their own best interests. Nash,
minmax and leader–follower are main strategies in dealing with
the noncooperative game. In contrast to noncooperative game,
cooperate game is far less developed. Pareto optimality plays a
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crucial role in analyzing cooperative differential game. In the past
decades, the Pareto optimality has been widely used in various
economic theories such as optimal economic growth, environmen-
tal economics and engineering (Acemoglu, 2008; Basar & Olsder,
1999; Dockner et al., 2000; Ramsey, 1928). This problem has been
extensively studied for the deterministic systems (Engwerda,
2008, 2010; Reddy & Engwerda, 2013, 2014). Engwerda (2008) de-
termined the set of Pareto efficient strategies for the regular convex
cooperative differential game of linear affine systems, in which
the time horizon may be either finite or infinite. Engwerda (2010)
presented necessary and sufficient conditions for the existence of
the Pareto solutions for the finite horizon cooperative differential
gameof nonlinear systems. Furthermore, the obtained resultswere
used to analyze the LQ case and the scalar case, respectively. Reddy
and Engwerda (2013) derived the conditions for the existence of
the Pareto optimal solutions for the LQ infinite horizon cooperative
differential games, and further clarified the relationship between
the Pareto optimality and the weighted sum minimization. Reddy
and Engwerda (2014) extended the existing finite horizon frame-
work (Engwerda, 2010) to the infinite horizon case.

In recent years, there is an increasing interest in the consider-
ation of the Pareto optimality for a wider range of systems (Chen
& Ho, 2016; Chen, Lee, & Wu, 2015; Mukaidani, 2013; Mukaidani
& Xu, 2009; Zhang, Lin, & Xue, 2017). For the multiobjective
H2/H∞ filtering design problem, by using a stochastic T–S fuzzy
system to approximate the original nonlinear signal systems, Chen
et al. (2015) developed an LMI-based multiobjective evolution
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algorithm (MOEA) to derive the Pareto optimal solutions of the
nonlinear signal systems. In order to achieve the simultaneous
optimization, Chen and Ho (2016) used the LMI-based MOEA to
efficiently search the set of Pareto optimal solutions for the mul-
tiobjective H2/H∞ tracking controller design of the stochastic T–S
fuzzy systems. Mukaidani and Xu (2009) obtained the decentral-
ized stochastic Pareto optimal static output feedback strategy for a
class of weakly coupled systems with state-dependent noise in in-
finite horizon. Mukaidani (2013) discussed Pareto and Nash games
for a class of linear stochastic delay systems governed by Itô’s
stochastic differential equation, respectively. Zhang et al. (2017)
considered the finite horizon LQ Pareto optimal control problem of
the stochastic singular systems. It should be noted that most of the
existing works only research the Pareto optimality for the regular
convex LQ case. Therefore, Pareto optimality should be considered
for more general case.

Motivated by the above discussion, in this paper, we study the
Pareto game of the stochastic Itô systems in finite horizon. It may
be viewed as an extensive research of Engwerda (2010), in which
the Pareto optimality was studied for the deterministic systems.
Due to the definition of the solution of Itô equations, the adapt-
ability of the solution with respect to the information flow {Ft}t≥0
should be considered. Thus, compared with Engwerda (2010),
the Pareto game of the stochastic systems becomes substantially
more difficult to be solved. In addition, the presence of the control
in the diffusion term makes the Pareto game of the stochastic
systems significantly different from the deterministic one. In the
Pareto game of the deterministic systems, the control weighting
matrix in the cost functional has to be positive definite. However,
in stochastic Itô systems, the control weighting matrix can even
be negative definite. Hence, this work is not the routine extension
of the deterministic counterpart at all. The main contributions of
this paper are as follows: (i) For the nonlinear case, in view of the
equivalent characterization of the Pareto optimality, the necessary
conditions for the existence of the Pareto solutions are put forward
by means of the stochastic Pontryagin minimum principle and the
Lagrange multipliers technique. (ii) Conversely, under certain con-
vex assumptions, it is shown that the necessary conditions are also
sufficient. It should be noted that, in the historical development
of the Pareto game, there are few results established on the exis-
tence conditions of the Pareto solutions for the stochastic systems.
(iii) For the LQ case, we provide the sufficient conditions, under
which, the Pareto efficient strategy is equivalent to the weighted
sum optimal control. In addition, a generalized Lyapunov equation
(GLE) is introduced and all Pareto solutions are obtained based on
the solution of the GLE. Different from the regular requirements
in Engwerda (2010, Section 3.2), the control weightingmatrices in
the cost functionals are allowed to be indefinite.

The rest of the paper is organized as follows. Section 2 presents
both the necessary and sufficient conditions for the existence of the
Pareto solutions for the nonlinear stochastic systems. Section 3 is
devoted to exploring the indefinite LQ case. It gives the sufficient
condition for us to calculate all Pareto efficient strategies by the
weighted sum optimality method. Two examples are provided to
illustrate the effectiveness of the obtained conclusions. Finally,
Section 4 concludes the paper with some remarks.

Notation. Rn: the space of all real n-dimensional vectors. Rm×n:
the space of all m × n real matrices. A > B (resp. A ≥ B):
A − B is a real symmetric positive definite (resp. positive semi-
definite) matrix. AT : the transpose of matrix A. E(x): the mathe-
matical expectation of x. ei: the n-dimensional identity vector in
which the ith entry is 1 and the others are 0. ∥x∥: the Euclidean
norm of vector x. A := {α = (α1, . . . , αN )| 0 ≤ αi ≤ 1
and

∑N
i=1αi = 1}. N̄ := {1, . . . ,N}. N̄\i: the set N̄ where i

is lacking. L2
F (0, T ;Rn): the space of nonanticipative stochastic

process ϕ(t) ∈ Rn with respect to (w.r.t.) an increasing σ -algebra
{Ft}t≥0 satisfying E

∫ T
0 ∥ϕ(t)∥2dt < ∞.

2. Necessary and sufficient conditions for the nonlinear case

In this section, we consider the cooperative differential game
that N players decide to coordinate their actions with an intent
to minimize their cost functionals. For player i, i ∈ N̄ , the cost
functional

Ji(u1, . . . , uN , x0)

= E
{∫ T

0
fi(t, x(t), u1(t), . . . , uN (t))dt + hi(x(T ))

}
, (1)

where fi : [0, T ] × Rn
× Rm1 × · · · × RmN → R, hi : Rn

→ R,
i ∈ N̄ and x(t) ∈ Rn is the state vector of the following nonlinear
stochastic system{dx(t) = b(t, x(t), u1(t), . . . , uN (t))dt

+ σ (t, x(t), u1(t), . . . , uN (t))dw(t),
x(0) = x0,

(2)

where b, σ : [0, T ]×Rn
×Rm1 ×· · ·×RmN → Rn, ui(t) ∈ Rmi is the

control vector of player i, i ∈ N̄ , w(t) is one-dimensional standard
Wiener process that is defined on the complete filtered probability
space (Ω,F,P;Ft ) with Ft = σ (w(s) : 0 ≤ s ≤ t) and x0 ∈ Rn is
the initial condition which is deterministic.

To have a well-posed problem, we introduce the following
assumptions:

Hypothesis 1. (A1) b, σ are continuously differentiable w.r.t.
(x, u1, . . . , uN ). b, σ are bounded by C1(1+∥x∥+∥u1∥+· · ·+∥uN∥).
bx, σx, bui , σui , i ∈ N̄ are bounded.

(A2) fi, i ∈ N̄ are continuously differentiable w.r.t. (x, u1, . . . , uN ),
hi, i ∈ N̄ are continuously differentiable w.r.t. x. fi, i ∈ N̄ are bounded
by C2(1+∥x∥+∥u1∥+· · ·+∥uN∥)2, hi, i ∈ N̄ are bounded by C2(1+

∥x∥)2. fix, fiuj , i, j ∈ N̄ are bounded by C2(1+∥x∥+∥u1∥+· · ·+∥uN∥),
h′

i , i ∈ N̄ are bounded by C2(1 + ∥x∥).

Since the players coordinate their actions, we denote the joint
action by u(t) := (u1(t), . . . , uN (t)) ∈ Rm with m =

∑N
i=1mi. The

set of all admissible controls is denoted by U . In this section, we
consider U = L2

F (0, T ;Rm1 ) × · · · × L2
F (0, T ;RmN ), which is a

convex subspace. Sincewe are interested in the jointminimization
of the objectives of all players, the cost incurred by a single player
cannot beminimizedwithout increasing the cost incurred by other
players. So, we consider solutions which cannot be improved upon
by all the players simultaneously, i.e., the so-called Pareto optimal
solutions.

Definition 2 (Engwerda, 2008, Definition 1.1). Let U denote the set
of admissible controls. Then û ∈ U is called Pareto efficient if the
set of the following inequalities

Ji(u, x0) ≤ Ji(û, x0), i ∈ N̄,

do not allow for any solution u ∈ U , where at least one of
the inequalities is strict. The corresponding point (J1(û, x0), . . . ,
JN (û, x0)) ∈ RN is called a pareto solution. The set of all Pareto
solutions is called the Pareto frontier.

The objective of this section is to find the set of Pareto efficient
strategies of the finite horizon stochastic cooperative differential
game (1)–(2), which is denoted by problem (P). Lemma 3, given
below, provides us an easy way to find Pareto efficient strategies.
It points out that every control minimizing aweighted sum (where
all weights are strictly positive and the sum is one) of the cost
functionals of all players is Pareto efficient. So, varying the positive
weights over the unit simplex, one obtains, in principle, different
Pareto efficient strategies.
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