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a b s t r a c t

The present work handles the nonparametric identification of linear dynamic systems within an errors-
in-variables framework, where the input is arbitrary and both the input and output disturbing noises
are white with unknown variances. Using the property that the frequency response function and the
system leakage term can be locally approximated verywell by a low-order degree polynomial, a frequency
domain estimator is developed, which gives consistent estimates for the frequency response function
and the input–output noise variances. The consistency and uniqueness of the estimator are theoretically
analyzed undermild conditions, and uncertainty bounds are also provided. The proposedmethod is finally
validated on a simulated linear dynamic system.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic systems are parametrically and nonparametrically id-
entified (see, e.g., textbooks like Ljung, 1999, Pintelon& Schoukens,
2012). Parametric identification methods model the system with
finite number of parameters independent of the number of data
points, while for nonparametric methods the number of parame-
ters increases with the number of data points. The nonparametric
identification is the primary stage of the identification process to
gain insight into the system complexity and to guide the user in
the model selection/validation of the parametric modeling step.

Nonparametric frequency response function (FRF) identifica-
tion has been developed within an output error (OE) framework
where the input is known,with the emphasis on the suppression of
the leakage error which is caused by transforming a finite number
of time domain samples into the frequency domain via the discrete
Fourier transform (DFT). The classical spectral analysis reduces
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the leakage error using windowing techniques (Brillinger, 1981;
Ljung, 1999). The leakage error is highly structured with a smooth
frequency characteristic (McKelvey, 2002; Pintelon, Schoukens,
& Vandersteen, 1997). This property is utilized for the develop-
ment of the improved FRF-estimation methods, such as the local
polynomial method (LPM) (Pintelon, Schoukens, Vandersteen, &
Barbé, 2010a; Schoukens, Vandersteen, Barbé, & Pintelon, 2009),
the local rational modeling method (McKelvey & Guérin, 2012),
and the transient and impulse response modeling method (Hägg,
Schoukens, Gevers, & Hjalmarsson, 2016). From an alternative
point of view, regularization techniques are proposed for nonpara-
metric impulse response (Pillonetto, Dinuzzo, Chen, De Nicolao, &
Ljung, 2014) and FRF (Lataire & Chen, 2016) estimation.

Comparedwith theOE framework, the nonparametric FRF iden-
tification in the errors-in-variables (EIV) framework is more diffi-
cult to handle, as both input and output data are noisy. Classical
estimators based on spectral analysis (e.g., H1 and H2 Bendat &
Piersol, 2010) are all biased. Early attempts to minimize the bias
error lead to the Hs estimator and the special case of this estimator
called Hv (White & Collis, 1998; White, Tan, & Hammond, 2006).
The Hs estimator is shown to be a special case of a maximum
likelihood estimator when the ratio of the input and output noise
spectra is known (White et al., 2006). However, the knowledge of
this noise spectra ratio is hardly available in practice. Nonlinear
averaging techniques have been developed to reduce the bias error
for frequency response function measurements (Guillaume, Pin-
telon, & Schoukens, 1992; Schoukens & Pintelon, 1990). Unbiased
estimation of the FRF is realized by considering specific excitations,
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such as periodic inputs (Pintelon & Schoukens, 2001), cyclostation-
ary inputs (Antoni,Wagstaff, &Henrio, 2004), nonstationary inputs
(Shalvi &Weinstein, 1996), pulse-like excitations (Hostettler, Birk,
& Nordenvaad, 2016), and use of a known reference signal via
an indirect method (Pintelon, Schoukens, Vandersteen, & Barbé,
2010b).

To summarize, the consistent estimation of the nonparametric
FRF of a linear dynamic system excited by arbitrary inputs remains
an open question in the presence of the input–output noises with
unknown power spectra. To generate uncertainty bounds on the
FRF estimate one needs the disturbing noise power spectra. There-
fore, estimating the input–output noise power spectra is as impor-
tant as estimating the FRF itself. The present work contributes to
it by handling nonparametric EIV modeling using arbitrary inputs
from input–output data disturbed by noise sources with unknown
variances. The proposed method is based on the local polynomial
modeling of the FRF and the system leakage term since it is su-
perior in discarding the leakage error while maintaining the full
frequency resolution compared with the classical spectral analysis
method (Pintelon et al., 2010a).

The main features of the proposed frequency domain nonpara-
metric approach are as follows: (1) Arbitrary inputs are allowed,
and critical prior knowledge on input–output noise variances is
not needed, (2) The FRF and the input–output noise variances
are consistently estimated for dynamical systems with unknown
model complexity, and (3) Uncertainty bounds of all the estimates
are provided along with their Cramér–Rao lower bounds. These
properties are theoretically derived, and also demonstrated on a
simulated example.

In this paper, the following notations are used. Vectors are
column vectors. If x is a vector, ∥x∥2

2 stands for the inner prod-
uct of the vector (squared l2 norm). The ordo O(x) stands for an
arbitrary function with the property limx→0 |O(x)/x| < ∞. (·)T is
the transpose operation, and (·)† denotes the conjugate transpose
operator. The symbol E stands for the expectation, computedw.r.t.
the measurements. For a complex variable X , Re(X) and Im(X) are
the real and imaginary parts of X , respectively. cond(M) denotes
the condition number of thematrixM. g(x)|x∗ is the value of g(x) at
x∗. x0 denotes the true (expected) value of the (random) variable x.

2. Problem formulation

Consider the linear time-invariant system described in Fig. 1.
Let {u(t)}N−1

t=0 and {y(t)}N−1
t=0 be a set of input and output obser-

vations at N equidistant points, whose corresponding Discrete
Fourier Transforms (DFTs) are calculated as

X(k) =
1

√
N

N−1∑
t=0

x(t) exp
(

−
ȷ2πk
N

t
)

(1)

where x = u, y and X = U, Y . X(k) is scaled by 1/
√
N such that

its power remains the same as N increases.
Applying the Discrete Fourier transform (1) to the ordinary

differential equation of a dynamical system, the input–output rela-
tionship in the frequency domain for an arbitrary excitation reads,

Y (k) = G(Ωk)U0(k) + T (Ωk) + NY (k), (2)
U(k) = U0(k) + NU (k), (3)

where U(k) and Y (k) are the DFTs of input and output, respec-
tively, U0(k) is the DFT of the noise-free input, G(Ωk) is the FRF,
T (Ωk) is the system leakage term, whose value vanishes at a rate
of O(N−1/2), NU (k) and NY (k) are the DFTs of the input–output
noises, respectively. Ωk is the generalized frequency variable (for
continuous-time systems Ωk = j2π fk, for discrete-time system

Fig. 1. Errors-in-variables measurement setup.

Ωk = exp(−jωkTs), with fk = fsk/N and fs the sampling frequency).
The DC (k = 0) and Nyquist (k = N/2) components are excluded
from the analysis, and K denotes the set of measured DFT lines
(k ∈ K).

T (Ωk) is a system leakage term due to the difference between
the beginning and ending effects of the finite measurement. Keep
in mind that T (Ωk) and G(Ωk) are both highly structured with a
smooth behavior.

Assumption 1. The plant’s FRF and the system leakage term are
infinitely differentiable at frequencies of interest.

This is a weaker condition than the standard assumption that
the FRF and the leakage term admit parametric rational modeling.
By consequence, in a local frequency window, the FRF and the
system leakage term can be approximated arbitrarily well by a
polynomial of sufficiently high order in least squares sense (Krei-
der, Kuller, Ostberg, & Perkins, 1966).

Assumption 2. The (band-limited) white measurement noise is
independent and identically distributed at the sampling instances,
the input–output noises are mutually uncorrelated and they are
independent of the noise-free input.

Under Assumption 2, the DFT of the noise has zero mean and is
asymptotically (N → ∞) independent (over DFT line k) circular
complex normally distributed. Moreover it is independent (over
k), circular complex normally distributed for any N if the noise
is Gaussian and white (Brillinger, 1981; Pintelon & Schoukens,
2012). i.e., NU (k) ∈ Nc

(
0, σ 2

U

)
, NY (k) ∈ Nc

(
0, σ 2

Y

)
. Nc denotes the

circular complex normal probability density function. Define σ2 as
the vector of the input–output noise variances

σ2
=

[
σ 2
Y

σ 2
U

]
. (4)

Assumption 3. The amplitude of the system’s FRF is frequency-
dependent.

This assumption excludes all-pass systems which are com-
mented to be not identifiable in the presence of white input–
output noises (Castaldi & Soverini, 1996; Zhang & Pintelon, 2017).

Depending on themethodwewill discuss, the input is assumed
to be an arbitrary DFT sequence that satisfies the property of a
rough signal (Schoukens et al., 2009). The basic idea used is that the
leakage error has a smooth DFT spectrum while this is not for the
input. Formally, the signal u0(t) with the DFT U0(k) is called rough
of order p at the DFT line k if it meets the following requirement,⏐⏐diff(p) (U0(k))

⏐⏐ = O(N0), (5)

which means that
⏐⏐diff(p) (U0(k))

⏐⏐ does not disappear even if the
record lengthN → ∞, andwhere diff(1) (U0(k)) = U0(k+1)−U0(k)
and diff(p) = diff(1)

(
diff(p−1)). A special example of such rough
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