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a b s t r a c t

The Nonlinear Output Frequency Response Functions (NOFRFs) are a concept which provides a new
extension of the well-known concept of the Frequency Response Function (FRF) of linear systems to
the nonlinear case. The present study introduces a NOFRFs based approach for the analysis of nonlinear
systems in the frequency domain. It is well known that a nonlinear system can, under rather general
conditions, be represented by a polynomial type Nonlinear Auto Regressivewith eXogenous input (NARX)
model. From the NARX model of a nonlinear system under study, the NOFRFs based approach for the
frequency analysis of nonlinear systems involves solving a set of linear difference equations known as
the Associated Linear Equations (ALEs) to determine the system nonlinear output responses and then
the NOFRFs of the system up to an arbitrary order of nonlinearity of interests. The results enable a
representation of the frequency domain characteristics of nonlinear systems by means of a series of
Bode diagram like plots that can be used for nonlinear system frequency analyses for various purposes
including, for example, condition monitoring, fault diagnosis, and nonlinear modal analysis.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The frequency domain approach of linear systems is the very
basis of control, signal processing, and communication and has
been applied in almost all science and engineering areas. The key
concept associated with the linear system frequency analysis is
the Frequency Response Function (FRF), which is the foundation
of Bode diagrams, Nyquist stability criterion, modal analysis, filter
designs, among other well-known and well-established theories
and methods.

The direct extension of the FRF concept to the nonlinear case is
known as the Generalized Frequency Response Functions (GFRFs)
(George, 1959), which were proposed under the assumption that
the output of the nonlinear systems under study can be described
by a convergent Volterra series (Boyd & Chua, 1985). The diffi-
culties with the practical application of the GFRFs are that the
GFRFs can only be graphically studied up to the second order (Yue,
Billings, & Lang, 2005). This implies that the well-established Bode
or Nyquist diagram based frequency domain analysis cannot be
generally extended to thenonlinear case. Therefore, although some
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specific applications can be found in literatures such as, e.g., in
image processing (Ramponi, 1986), channel equalization (Karam
& Sari, 1989) and fault detection (Tang, Liao, Cao, & Xie, 2010), a
systematic approach for the analysis of nonlinear systems in the
frequency domain that can be generally applied in practice still
does not exist.

It is worth mentioning that describing functions (Khalil, 2002)
are a traditional frequency domain analysis approach to nonlinear
systems which only involve a one dimensional function of fre-
quency and have been used in practical nonlinear system control
problems. However, describing functions are defined for specific
nonlinear components and can only be applied in the context of
simple control systems with an a priori given structure.

Nonlinear FRF and associated nonlinear Bode plots (Pavlov,
van de Wouw, & Nijmeijer, 2007; Rijlaarsdam, Nuij, Schoukens, &
Steinbuch, 2017) were introduced based on the exact evaluation
of the bound on the output response of nonlinear systems under
a harmonic excitation. These are the concepts of the nature and
properties similar to that of the describing functions.

In order to resolve these difficulties, researchers have made
considerable efforts to develop new concepts that can capture the
system essential features while keeping problem dimensionality
low. Examples of such approaches are the best linear approx-
imation (Schoukens, Nemeth, Crama, Rolain, & Pintelon, 2003),
the High Order Sinusoidal Input Describing Functions (HOSIDF)
(Nuij, Bosgra, & Steinbuch, 2006) and the Associated Frequency
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Response Functions (AFRFs) (Feijoo, Worden, & Stanway, 2004).
These approaches have also been applied to solve many engi-
neering problems (Feijoo, Worden, & Stanway, 2006; Rijlaarsdam,
Nuij, Schoukens, & Steinbuch, 2012; Rijlaarsdam, Setiadi, Nuij,
Schoukens, & Steinbuch, 2013). However, these approaches have
many limitations. For instance, HOSIDF can only deal with sinu-
soidal inputs and require complex computations that must be re-
peated for each frequency of interest while AFRFs can be evaluated
only when the differential equation model of the system under
study is available. In addition, these approaches have only been
studied for simple and particular cases. It is difficult to assess the
efficiency of these approaches in situations where systems are
described by more general nonlinear models.

The concept ofNonlinearOutput FrequencyResponse Functions
(Lang & Billings, 2005) – NOFRFs – is a new extension of the
FRF to the nonlinear case. One of its most attractive feature is
its one-dimensional nature, which has many advantages, as has
been demonstrated by a wide range of studies (Lang & Peng, 2008;
Peng, Lang, & Billings, 2007). However, current applications of
the NOFRFs use a Least Squares (LS) based method to evaluate
the NOFRFs (Lang & Billings, 2005). This requires an appropriate
selection of the maximum order of the system nonlinearity, which
is sometimes difficult andmay suffer from numerical issues. In ad-
dition, the method requires the system response data from several
simulation or experimental tests, whichmay not be convenient for
implementation.

The present study is motivated by the need of addressing these
problems. A systematic NOFRF-based approach for the nonlinear
system frequency analysis is developed based on a polynomial
type Nonlinear Auto Regressive with eXogenous input (NARX)
model, which can either be obtained by discretizing the system’s
nonlinear differential equation model or determined by a data
driven system identification method (Billings, 2013). The work
involves the derivation of an algorithmwhich solves a set of linear
difference equations to determine the nonlinear output responses
and then the NOFRFs of a nonlinear system up to an arbitrary order
of interest.

The results enable a representation of the frequency domain
characteristics of nonlinear systems by means of a series of Bode
diagram like plots that can be used for nonlinear system frequency
analyses for various purposes including, for example, condition
monitoring, fault diagnosis, and nonlinear modal analysis (Xia, Ni,
& Sang, 2017; Zhang, Lang, & Zhu, 2016). The application of the
proposednewanalysis to the detection andquantification of cracks
in a beam structure is finally demonstrated in a case study.

2. The NOFRFs based approach for the analysis of nonlinear
systems in the frequency domain

2.1. Nonlinear Output Frequency Response Functions (NOFRFs)

Let y (k) and u (k) respectively denote the output and input of
a discrete time fading memory system (Boyd & Chua, 1985) with
a zero equilibrium, and k represent the discrete time. The system
output response around the origin can be described by the Volterra
series:

y (k) =

+∞∑
n=1

yn (k) =

+∞∑
n=1

∑
Zn

hn (τn)

n∏
i=1

u (k − τi) (1)

where yn (k) denotes a degree-n polynomial functional of u (k),
hn (τn) = hn (τ1, . . . , τn) is the degree-n kernel.

Functionals can be described in the frequency domain using
integral transforms such as the Z transform or the normalized

Discrete-Time Fourier Transform (DTFT). For example, the normal-
ized DTFT of yn (k) can be described as (Lang & Billings, 1996)

Yn (jω) =
1

√
n(2π)n−1

∫
Hn (jωn)

n∏
i=1

U (jωi) dσn, ω (2)

where the integration is carried out over the hyperplaneω1+· · ·+

ωn = ω with −π ≤ ω/fs ≤ π , where fs is the sampling frequency.
The function Hn (jωn) = Hn (ω1, . . . , ωn) is the nth order GFRF

defined as the nth order normalized DTFT of hn (τn)

Hn (jωn) = ∆t
∑
Zn

hn (τn)

n∏
i=1

e−jωiτi∆t (3)

and U (jω) is the normalized DTFT of u (k).

Definition 1. Let u (k) be the sequence of a finite energy signal. In
the discrete time domain, the nth order generalized spectrum of
u (k) is defined as (Lang & Billings, 2005):

Un (jω) = DF
{
un (k)

}
∆t =

1
√
n(2π)n−1

∫ n∏
i=1

U (jωi) dσn, ω (4)

where DF denotes the DTFT.

Definition 2. The nth order NOFRF is defined as (Lang & Billings,
2005):

Gn (jω) =
Yn (jω)
Un (jω)

; ω ∈ Ω ⊆ [−π fs, π fs] (5)

whereΩ is the frequency support of |Un (jω)|, which can be deter-
mined using the results about the output frequencies of nonlinear
systems (Lang & Billings, 1996).

The NOFRFs as defined in (5) have the following attractive
properties.

Property 1 ( (Lang & Billings, 2005)). Let K be a non-zero constant
and Gn (jω) the nth order NOFRF computed for U (jω). Then, the
NOFRF computed for KU (jω) are also Gn (jω).

Property 2 ( (Lang & Billings, 2005)). The frequency support of
Gn (jω), Yn (jω) and Un (jω), i.e., the frequency range where these
functions of frequency are well defined, are the same.

2.2. The NOFRFs based approach for the analysis of nonlinear systems
in the frequency domain

It is obvious that the NOFRFs are an extension of the FRF to the
nonlinear case, as when n = 1, Gn (jω) = G1 (jω) reduces to the
FRF of a linear system.

The NOFRFs of higher orders are generally dependent on the
system input (Lang & Billings, 2005). However, different systems
have different NOFRFs when probed by the same input. Conse-
quently, the NOFRFs evaluated under the same input can be ex-
ploited to reveal the differences between systems in the frequency
domain. This is the fundamental idea of the NOFRFs based system
frequency analysis.

Based on these ideas, a general approach for the analysis of
nonlinear systems in the frequency domain using the NOFRFs can
be proposed as follows.

(i) Find an NARX model of the nonlinear system.
(ii) Determine the NOFRFs of the system from the NARX model

under a probing input dependent on the specific application.
(iii) Analyze the system in the frequency domain from the deter-

mined NOFRFs for the specific application related objective.
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