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a b s t r a c t

This paper investigates the stability and performance of the standard least mean squares (LMS)-based
consensus adaptive filters under a changing network topology. We first analyze the stability for possibly
unbounded, non-independent and non-stationary signals, by introducing an information condition that
can be shown to be not only sufficient but also necessary for the global stability.We also demonstrate that
the distributed adaptive filters can estimate a dynamic process of interest from noisy measurements by
a set of sensors working in a collaborative manner, in the natural scenario where none of the sensors can
fulfill the estimation task individually. Furthermore,we give an analysis of the filtering error under various
assumptions without stationarity and independency constraints on the system signals, and thus do not
exclude applications to stochastic systems with feedback. In contrast to the analyses of the normalized
LMS-based distributed adaptive filters, we need to use stochastic averaging theorems in the stability
analysis due to possible unboundedness of the system signals.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

When filtering or tracking an unknown signal or parameter
process in a distributed sensor network, each sensor can produce
a local estimate based on its own noisy measurements and on
the information gathered from other sensors. There are essen-
tially three scenarios for this problem, i.e., centralized processing,
distributed processing and the combination of both. In the first
scenario, all the sensors transmit information to a fusion center,
while in the second scenario, no fusion center is required and
any sensor will conduct the estimation task through communi-
cating with its neighbors. For centralized processing, collecting
measurements from all other distributed sensors over the network
may not be feasible in many practical situations due to limited
communication capabilities, energy consumptions, packet losses
or privacy considerations. These are the main motivations for the
development of the distributed algorithms, in which any sensor
only needs to exchange information with its neighbors, which will
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be more robust, need fewer communications and allow parallel
information processing.

There are basically three types of strategies for distributed
algorithms in the literature, namely, incremental strategies (Cat-
tivelli & Sayed, 2011; Lopes & Sayed, 2007), consensus strategies
(Braca, Marano, & Matta, 2008; Chen, Wen, Hua, & Sun, 2014;
Kar & Moura, 2011; Solo, 2015) and diffusion strategies (Cattivelli
& Sayed, 2010; Chen & Sayed, 2015a, b; Nosrati, Shamsi, Taheri,
& Sedaaghi, 2015; Piggott & Solo, 2016, 2017; Sayed, 2014a, b).
Despite of extensive researches on distributed adaptive filtering
algorithms in recent years, most of the existing literature on sta-
bility and performance analyses require statistical independency
or stationarity assumptions for the system signals (e.g., Cattivelli
& Sayed, 2010, 2011; Kar & Moura, 2011; Lopes & Sayed, 2007;
Nosrati et al., 2015; Sayed, 2014a, b), which cannot be satisfied
in many practical situations, for example, signals from feedback
systems. Some other interesting works that do not require the
temporal independency of the regressors can be found when the
signal to be estimated is a constant (Chen&Sayed, 2015a; Piggott &
Solo, 2016, 2017; Solo, 2015). In particular, Piggott and Solo (2016)
appear to be the first to study the almost sure convergence of
the LMS-based distributed algorithms, and Piggott and Solo (2017)
establish the second order performance results under temporally
strictly stationary and strong mixing assumptions.

To provide stability and performance analyses under more
general correlated and non-stationary situations, Chen, Liu, and
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Guo (2014) considered a normalized diffusion LMS algorithm un-
der a cooperative stochastic information condition with a fixed
topology, but without independency or stationarity considera-
tions. Their stability results and analyses were later improved
(Chen, Liu, & Guo, 2016). In our recent work (Xie & Guo, 2015),
we analyzed the stability of normalized consensus LMS algorithm
with a fixed topology, under a more general information condition
than that used in Chen et al. (2014, 2016), which has also been
shown to be necessary for the stability of the consensus algorithm
in a certain sense. However, the random matrix product methods
(Chen et al., 2014, 2016; Xie & Guo, 2015) for the normalized
LMS fail to be applicable to the standard LMS consensus adaptive
filtering algorithms, because of the possible unboundedness of the
system signals. This is one of the key issues that we have to deal
with for the standard LMS filtering algorithms, and a preliminary
step was recently made on stability analysis with a fixed network
topology (Xie & Guo, 2017).

The main contributions of the paper contain the following
three aspects: (i) We will present a weakest possible information
condition for the stability of the standard LMS-based consensus
adaptive filters under possibly unbounded, non-independent and
non-stationary assumptions, which does not exclude applications
to stochastic systems with feedback. Stochastic averaging theo-
rems will be used in the stability analysis. (ii) We will show that
the whole sensor network can accomplish the estimation task co-
operatively, even if none of the sensors can do it individually due to
lack of sufficient information, and we will also give a performance
analysis for the mean square tracking error matrix under some
mild assumptions. (iii) We allow the network topology to change
over time and be jointly connected, which is applicable to situa-
tions where communication interruptions may happen between
sensors.

In the rest of the paper, we will present the consensus adaptive
filters based on the standard LMS in Section 2. Some necessary
notations, concepts and mathematical definitions are stated in
Section 3. Themain results and proofs are given in Sections 4 and 5,
respectively. Section 6 gives a simulation result and Section 7
concludes the paper and discusses related future problems.

2. Problem formulation

In this paper, we assume that the signal model at any sensor
i (i = 1, . . . , n) of the sensor network is described by a stochastic
time-varying linear regression as follows

yik = (ϕi
k)

T θk + vi
k, k ≥ 0, (1)

where yik is the scalar observation of the sensor i at time k, vi
k is the

disturbance or un-modeled dynamics, ϕi
k is them×1-dimensional

stochastic regressor of the sensor i, and θk is an unknown m × 1-
dimensional stochastic signalswhose variation at time k is denoted
by ωk, i.e.,

ωk ≜ θk − θk−1, k ≥ 1. (2)

To estimate the unknown {θk, k ≥ 0}, we consider the standard
LMS-based consensus adaptive filter, which is recursively defined
at each sensor i = 1, . . . , n as follows

θ̂
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, k ≥ 0, (3)

where ν ∈ (0, 1) is aweighting constant,µ ∈ (0, 1) is the step-size,
{ali,k} is the adjacency matrix of the sensor network, andNi,k is the
set of neighbors of the sensor i at time k (see the next section for

details).We remark that if ν = 0, then the above algorithm reduces
to n independent LMS filters, which have been extensively studied
in the literature (see e.g., Guo, Ljung, & Wang, 1997; Solo & Kong,
1995; Widrow & Stearns, 1985).

To write the above distributed adaptive filters into a compact
form, we introduce the following notations:
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},

Gk ≜ Fk + ν(Lk ⊗ Im)

where col{· · · } denotes a vector by stacking the specified vectors,
diag{· · · } is used in a non-standardmannerwhichmeans thatm×1
column vectors are combined ‘‘in a diagonal manner’’ resulting in
anmn× nmatrix, Lk is the Laplacian matrix of the graph at time k
(see the next section for details), ⊗ is the Kronecker product, and
Im denotes the m-dimensional identity matrix. By (1) and (2), we
have

Yk = ΦT
kΘk + Vk, k ≥ 0,

and

Ωk+1 = Θk+1 − Θk, k ≥ 0.

From (3), we obtain that ∀k ≥ 0,

Θ̂k+1 = Θ̂k + µΦk(Yk − ΦT
k Θ̂k) − µν(Lk ⊗ Im)Θ̂k,

where Lk is the Laplacian matrix of graph Gk (see the next section).
Let us denote Θ̃k = Θ̂k −Θk and because (Lk ⊗ Im)Θk = 0, we can
get ∀k ≥ 0,

Θ̃k+1 = (Imn − µGk)Θ̃k + µΦkVk − Ωk+1. (4)

Note that by the stochastic internal–external stability results (see
Propositions 2.1 and 2.2 in Guo, 1994), we know that the stability
of (4) essentially hinges on the exponential stability of the homo-
geneous part:

Θ̃k+1 = (Imn − µGk)Θ̃k. (5)

This motivates us to give some definitions on exponential stability
in the next section.

3. Notations and definitions

Notations. Let Rm×n denote the set ofm × nmatrices with real
entries. For any random matrix X ∈ Rm×n, its Euclidean norm is
defined as its maximum singular value, i.e., ∥X∥ = {λmax(XXT )}

1
2 ,

where λmax(·) denotes the largest eigenvalue of matrix (·) and
(·)T denotes the transpose operator, and its Lp-norm is defined as
∥X∥Lp = {E[∥X∥

p
]}

1
p , whereE[·] denotes the expectation operator.

Network topology. Consider a set of n sensors and model it
as an undirected weighted graph. Since the relationship between
neighbors may change over time, so does the graph describing it.
Thenwehave a class of graphsGk on the n vertexes at time k (k ≥ 0)
composed of {V, Ek,Ak}, where V = {1, 2, . . . , n} is the vertex set,
Ek ⊆ V × V is the edge set at time k, andAk is a matrix reflects the
interaction strength among neighboring vertexes at time k. Define
Ak = {aij,k}n×n, i, j = 1, . . . , n, k ≥ 0, which is called the weighted
adjacency matrix with aij,k ≥ 0,

∑n
j=1aij,k = 1, ∀i = 1, . . . , n, k ≥

0. Since the graph Gk is undirected, we have aij,k = aji,k. Vertex i
denotes the ith sensor and (i, j) denotes the connection from sensor
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