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a b s t r a c t

In this paper a new distributed asynchronous algorithm is proposed for time synchronization in networks
with random communication delays, measurement noise and communication dropouts. Three different
types of the drift correction algorithm are introduced, based on different kinds of local time increments.
Under nonrestrictive conditions concerning network properties, it is proved that all the algorithm types
provide convergence in the mean square sense and with probability one (w.p.1) of the corrected drifts of
all the nodes to the same value (consensus). An estimate of the convergence rate of these algorithms
is derived. For offset correction, a new algorithm is proposed containing a compensation parameter
coping with the influence of random delays and special terms taking care of the influence of both linearly
increasing time and drift correction. It is proved that the corrected offsets of all the nodes converge in
the mean square sense and w.p.1. An efficient offset correction algorithm based on consensus on local
compensation parameters is also proposed. It is shown that the overall time synchronization algorithm
can also be implemented as a flooding algorithm with one reference node. It is proved that it is possible
to achieve bounded error between local corrected clocks in the mean square sense and w.p.1. Simulation
results provide an additional practical insight into the algorithm properties and show its advantage over
the existing methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Cyber–Physical Systems (CPS), Internet of Things (IoT) and Sen-
sor Networks (SN) have emerged as research areas of paramount
importance, with many conceptual and practical challenges and
numerous applications (Akyildiz & Vuran, 2010; Holler et al.,
2014; Kim & Kumar, 2012). One of the basic requirements in
networked systems is, in general, time synchronization, i.e., all the
nodes have to share a common notion of time. The problem of
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time synchronization in networked systems has attracted a lot of
attention, but still represents a challenge due to multi-hop com-
munications, stochastic delays, communication and measurement
noise, unpredictable packet losses and high probability of node
failures, e.g., Sundararaman, Buy, and Kshemkalyani (2005). There
are numerous approaches to this problem, starting from different
assumptions and using different methodologies, e.g., Elson, Girod,
and Estrin (2002), Sivrikaya and Yener (2004) and Sundarara-
man et al., (2005). An important class of time synchronization
algorithms is based on full distribution of functions (Simeone,
Spagnolini, Bar-Ness, & Strogatz, 2008; Solis, Borkar, & Kumar,
2006). Distributed schemes with the so-called gradient property
have been proposed in Fan and Lynch (2006) and Sommer and
Wattenhofer (2009). A class of consensus based algorithms, called
CBTS (Consensus-Based Time Synchronization) algorithms, has at-
tracted considerable attention, e.g., He, Cheng, Chen, Shi, and Lu
(2014a), He, Cheng, Shi, Chen, and Sun (2014b), Li and Rus (2006),
Liao and Barooah (2013a), Schenato and Fiorentin (2011), Tian
(2015) and Xiong and Kishore (2009). It has been treated in a
unified way in a recent survey (Tian, Zong, & Cao, 2016), providing
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figure of merit of the principal approaches. In Carli, Chiuso,
Zampieri, and Schenato (2008) and Yildirim, Carli, and Schenato
(2015) a control-based approach to distributed time synchroniza-
tion has been proposed. Fundamental and yet unsolved problems
in all the existing approaches are connected with communication
delays and measurement noise; see Freris, Graham, and Kumar
(2011) for basic issues, and Chaudhari, Serpedin, and Qaraqe
(2008), Choi, Liang, Shen, and Zhuang (2012), Garone, Gasparri,
and Lamonaca (2015) and Xiong and Kishore (2009) for different
aspects of delay influence.

In this paper we propose a new asynchronous distributed algo-
rithm for time synchronization in lossy networks, characterized
by random communication delays, measurement noise and commu-
nication dropouts. The algorithm is composed of two distributed
recursions of asynchronous stochastic approximation type based on
broadcast gossip and derived from predefined local error functions.
The recursions are aimed at achieving asymptotic consensus on the
corrected drifts and corrected offsets and, consequently, at obtaining
common virtual clock for all the nodes in the network.

The proposed recursion for drift synchronization is based on
noisy time increments, defined in three characteristic forms (a
preliminary form has been presented in Stanković, Stanković,
and Johansson (2016)). We prove convergence to consensus of the
corrected drifts in the mean square sense and with probability one
(w.p.1), under nonrestrictive conditions. Furthermore, we provide
an estimate of the corresponding asymptotic convergence rate. It
is shown that the proposed recursion with the increments of
unbounded length with random boundaries provides convergence
rate faster than 1

t , what is essential for convergence to a common
global virtual clock. Compared to the analogous existing algo-
rithms (Schenato & Fiorentin, 2011; Tian, 2015), the proposed
scheme is structurally different and simpler (not involving mutual
drift estimation, typical for the CBTS algorithms) and, in addition,
provides the best performance. Notice that the algorithm in Schen-
ato and Fiorentin (2011) cannot handle communication delays and
measurement noise, while the papers Tian (2015, 2017), derived
from a particular form of increments of unbounded length, treat
random delays, but not measurement noise and communication
dropouts. Moreover, the algorithm proposed therein cannot pro-
vide convergence rate achievable by the proposed methodology.
The approach in Garone et al. (2015) does not ensure consensus of
corrected drifts in spite of additional pairwise inter-node commu-
nications.

We also propose a novel recursion for offset synchronization,
which starts froma special error function, obtained from the differ-
ence between local times, with two important modifications aim-
ing at: (1) eliminating the deteriorating effect of linearly increasing
absolute time, and (2) coping with the influence of delays by
introducing additional delay compensation parameters. It is proved
that the proposed algorithm provides convergence in the mean
square sense and w.p.1 to a set of bounded random variables.
The algorithm for the offset correction proposed in Schenato and
Fiorentin (2011) cannot handle these problems, while the algo-
rithm in Tian (2015, 2017) allows unbounded corrected offsets
and assume perfect clock readings. The approach in Yildirim et
al. (2015) does not provide a rigorous insight into overall network
stability. Attention is also paid to an improvement of the offset cor-
rection algorithm, based on linear consensus iterations, aiming at
decreasing the dispersion of the offset convergence points. Special
cases related to delay and noise are discussed in order to clarify
potentials of the proposed algorithms.

The resulting time synchronization algorithm composed of the
proposed drift and offset correction recursions ensures finite dif-
ferences between local corrected clocks in the mean square sense
and w.p.1. To the authors’ knowledge, this is the first method with
such a performance in the case of random delays, measurement

noise and communication dropouts. It is also demonstrated that
the proposed algorithm can be implemented as a flooding algo-
rithm, with one preselected reference node.

Finally, some illustrative simulation results are presented, giv-
ing additional insights into the theoretically discussed issues.

2. Synchronization algorithms

2.1. Time and network models

Assume a network consisting of n nodes, formally represented
by a directed graph G = (N , E), where N is the set of nodes and
E the set of arcs. Denote by N+

i the out-neighborhood and by N−

i
the in-neighborhood of node i, i = 1, . . . , n. Assume that each node
has a local clock, whose output, defining the local time, is given for
any absolute time t ∈ R by

τi(t) = αit + βi + ξi(t), (1)

where αi ̸= 0 is the local drift (gain), βi is the local offset, while ξi(t)
is measurement noise, appearing due to equipment instabilities,
round-off errors, thermal noise, etc. Liao and Barooah (2013a,
b), Schenato and Fiorentin (2011) and Stanković, Stanković, and
Johansson (2012). Each node i applies an affine transformation to
τi(t), producing the corrected local time

τ̄i(t) = aiτi(t) + bi = git + fi + aiξi(t), (2)

where ai and bi are the local correction parameters, gi = aiαi is the
corrected drift and fi = aiβi + bi the corrected offset, i = 1, . . . , n.

Distributed time synchronization is aimed at providing a com-
mon virtual clock, i.e., equal corrected drifts gi and equal corrected
offsets fi, i = 1, . . . , n, by distributed real-time estimation of the
parameters ai and bi. We assume that the nodes communicate
according to the broadcast gossip scheme, e.g., Aysal, Yildriz, Sar-
wate, and Scaglione (2009), Bolognani, Carli, Lovisari, and Zampieri
(2012) and Nedić (2011), without global supervision or fusion
center. Therefore, each node j ∈ N has its own local communication
clock that ticks according to a Poisson process with rate µj, inde-
pendently of the other nodes. At each tick of its communication
clock (denoted by t jb, b = 0, 1, 2, . . .), node j broadcasts its current
state to its out-neighbors i ∈ N+

j . Each node i ∈ N+

j hears the
broadcast with probability pij > 0. Let {t j,il }, l = 0, 1, 2, . . . , be the
sequence of absolute time instants corresponding to the messages
heard by node i. The message sent at t j,il is received at node i at the
time instant

t̄ j,il = t j,il + δ
j,i
l ,

where δj,il represents the corresponding communication delay (for
physical and technical sources of delays see Chaudhari et al.
(2008), Choi et al. (2012), Freris et al. (2011), Leng and Wu (2011)
and Xiong and Kishore (2009)). We assume in the sequel that

δ
j,i
l = δ̄j,i + ηi(t̄

j,i
l ), (3)

where δ̄j,i is constant, while ηi(t̄
j,i
l ) represents a stochastically time-

varying component with zero mean. After receiving a message
from node j, node i reads its current local time, calculates its own
current corrected local time and updates the values of its correction
parameters ai and bi. The process is repeated after each tick of any
node in the network;we assume, as usually, only one tick at a given
time t (Nedić, 2011).
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