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Learning from examples is one of the key problems in science and engineering. It deals with function
reconstruction from a finite set of direct and noisy samples. Regularization in reproducing kernel Hilbert
spaces (RKHSs) is widely used to solve this task and includes powerful estimators such as regularization
networks. Recent achievements include the proof of the statistical consistency of these kernel-based
approaches. Parallel to this, many different system identification techniques have been developed but
the interaction with machine learning does not appear so strong yet. One reason is that the RKHSs usually
employed in machine learning do not embed the information available on dynamic systems, e.g. BIBO
stability. In addition, in system identification the independent data assumptions routinely adopted in
machine learning are never satisfied in practice. This paper provides some new results which strengthen
the connection between system identification and machine learning. Our starting point is the introduction
of RKHSs of dynamic systems. They contain functionals over spaces defined by system inputs and allow
to interpret system identification as learning from examples. In both linear and nonlinear settings, it is
shown that this perspective permits to derive in a relatively simple way conditions on RKHS stability (i.e.
the property of containing only BIBO stable systems or predictors), also facilitating the design of new
kernels for system identification. Furthermore, we prove the convergence of the regularized estimator to

Keywords:

Learning from examples

System identification

Reproducing kernel Hilbert spaces of
dynamic systems

Kernel-based regularization

BIBO stability

Regularization networks

Generalization and consistency

the optimal predictor under conditions typical of dynamic systems.
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1. Introduction

Learning from examples is key in science and engineering,
considered at the core of intelligence’s understanding (Poggio &
Shelton, 1999). In mathematical terms, it can be described as
follows. We are given a finite set of training data (x;, y;), where x; is
the so called input location while y; is the corresponding output
measurement. The goal is then the reconstruction of a function
with good prediction capability on future data: for a new pair (x, y),
the prediction g(x) should be close to y.

To solve this task, nonparametric techniques have been ex-
tensively used in the last years. Within this paradigm, instead of
assigning to the unknown function a specific parametric struc-
ture, g is searched over a possibly infinite-dimensional functional
space. The modern approach uses Tikhonov regularization theory
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(Bertero, 1989; Tikhonov & Arsenin, 1977) in conjunction with
Reproducing Kernel Hilbert Spaces (RKHSs) (Aronszajn, 1950;
Bergman, 1950). RKHSs possess many important properties, being
in one to one correspondence with the class of positive definite
kernels. Their connection with Gaussian processes is also described
in Aravkin, Bell, Burke, and Pillonetto (2015), Bell and Pillonetto
(2004), Kimeldorf and Wahba (1970) and Lukic and Beder (2001).

While applications of RKHSs in statistics, approximation the-
ory and computer vision trace back to Bertero, Poggio, and Torre
(1988), Poggio and Girosi (1990) and Wahba (1990), these spaces
were introduced to the machine learning community in Girosi
(1997). RKHSs permit to treat in a unified way many different
regularization methods. The so called kernel-based methods (Ev-
geniou, Pontil, & Poggio, 2000; Scholkopf & Smola, 2001) include
smoothing splines (Wahba, 1990), regularization networks (Pog-
gio & Girosi, 1990), Gaussian regression (Rasmussen & Williams,
2006), and support vector machines (Drucker, Burges, Kaufman,
Smola, & Vapnik, 1997; Vapnik, 1998). In particular, a regulariza-
tion network (RN) has the structure

N 2
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where # denotes a RKHS with norm || - || s».
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Thus, the function estimate minimizes an objective sum of two
contrasting terms: the quadratic loss which measures the adher-
ence to experimental data and the regularizer (the RKHS squared
norm) which restores the well-posedness. Finally, the positive
scalar y is the regularization parameter which has to suitably trade
off these two components.

The use of (1) has significant advantages. The choice of an ap-
propriate RKHS, often obtained just including function smoothness
information (Scholkopf & Smola, 2001), and a careful tuning of
y, e.g. by the empirical Bayes approach (Aravkin, Burke, Chiuso,
& Pillonetto, 2012, 2014; Maritz & Lwin, 1989), can well balance
bias and variance. One can thus obtain favorable mean squared
error properties. Furthermore, even if 27 is infinite-dimensional,
the solution g is always unique, belongs to a finite-dimensional
subspace and is available in closed-form. This result comes from
the representer theorem (Argyriou & Dinuzzo, 2014; Argyriou,
Micchelli, & Pontil, 2009; Kimeldorf & Wahba, 1970; Scholkopf,
Herbrich, & Smola, 2001). Building upon the work (Wahba, 1977),
many new results have been also recently obtained on the statis-
tical consistency of (1). In particular, the property of g to converge
to the optimal predictor as the data set size grows to infinity
is discussed e.g. in Mukherjee, Niyogi, Poggio, and Rifkin (2006),
Poggio, Rifkin, Mukherjee, and Niyogi (2004), Smale and Zhou
(2007), Wu, Ying, and Zhou (2006) and Yuan and Tony Cai (2010).
Parallel to this, many system identification techniques have been
developed in the last decades. In linear contexts, the first regular-
ized approaches trace back to Akaike (1979), Kitagawa and Gersch
(1996) and Schiller (1979), see also Goodwin, Gevers, and Ninness
(1992)and Ljung, Goodwin, and Agero (2014) where model error is
described via a nonparametric structure. More recent approaches,
also inspired by nuclear and atomic norms (Chandrasekaran, Recht,
Parrilo, & Willsky, 2012), can instead be found in Grossmann, Jones,
and Morari (2009), Liu and Vandenberghe (2009), Mohan and Fazel
(2010), Pillonetto, Chen, Chiuso, De Nicolao, and Ljung (2016) and
Rojas, Toth, and Hjalmarsson (2014). In the last years, many non-
parametric techniques have been proposed also for nonlinear sys-
tem identification. They exploit e.g. neural networks (Lin, Horne,
Tino, & Giles, 1996; Shun-Feng & Yang, 2002), Volterra theory
(Franz & Schélkopf, 2006), kernel-type estimators (Leithead, Solak,
& Leith, 2003; Pillonetto, Chiuso, & Quang, 2011b; Zhao, Chen, Bai,
& Li, 2015) which include also weights optimization to control
the mean squared error (Bai & Liu, 2007; Bai, 2010; Roll, Nazin,
& Ljung, 2005). Important connections between kernel-based reg-
ularization and nonlinear system identification have been also
obtained by the least squares support vector machines (Suykens,
Alzate, & Pelckmans, 2010; Suykens, Van Gestel, Brabanter, De
Moor, & Vandewalle, 2002) and using Gaussian regression for state
space models (Frigola, Lindsten, Schon, & Rasmussen, 2013; Frigola
& Rasmussen, 2013). Most of these approaches are inspired by
machine learning, a fact not surprising since predictor estimation
is at the core of the machine learning philosophy. Indeed, a black-
box relationship can be obtained through (1) using past inputs
and outputs to define the input locations (regressors). However,
the kernels currently used for system identification are those con-
ceived by the machine learning community for the reconstruction
of static maps. RKHSs suited to linear system identification have
been proposed only recently, e.g. in computer vision exploiting
compound matrices built from system trajectories (Vishwanathan,
Smola, & Vidal, 2007) or by introducing stable spline kernels which
embed information on impulse response regularity and stability
(Chen, Ohlsson, & Ljung, 2012; Pillonetto, Chiuso, & De Nicolao,
2011a; Pillonetto & De Nicolao, 2010). Furthermore, while stability
of a RKHS (i.e. its property of containing only stable systems or
predictors)is treated in Carmeli, De Vito, and Toigo (2006), Dinuzzo
(2015) and Pillonetto, Dinuzzo, Chen, Nicolao, and Ljung (2014),
the nonlinear scenario still appears unexplored. Beyond stability,

we also notice that the most used kernels for nonlinear regression,
e.g. the Gaussian (Schélkopf & Smola, 2001), do not include other
important information on dynamic systems like the fact that out-
put energy is expected to increase if input energy augments.

Another aspect that weakens the interaction between system
identification and machine learning stems also from the (appar-
ently) different contexts these disciplines are applied to. In ma-
chine learning one typically assumes that data (x;, y;) are i.i.d.
random vectors assuming values on a bounded subset of the Eu-
clidean space. But in system identification, even when the system
input is white noise, the input locations are not mutually indepen-
dent. Already in the classical Gaussian noise setting, the outputs
are not even bounded, i.e. there is no compact set containing them
with probability one. Remarkably, this implies that none of the
aforementioned consistency results developed for kernel-based
methods can be applied. Some extensions to the case of correlated
samples can be found in Guo and Zhou (2013), Steinwart, Hush,
and Scovel (2009), Vidyasagar (1997) and Wang and Zhou (2011)
but still under conditions far from the system identification setting.

In this paper we provide some new insights on the interplay
between system identification and machine learning in a RKHS
setting. Our starting point is the introduction of what we call RKHSs
of dynamic systems which contain functionals over input spaces 2~
induced by system inputs u. More specifically, each input location
X € % contains a piece of the trajectory of u so that any g € #
can be associated to a dynamic system. When u is a stationary
stochastic process, its distribution then defines the probability
measure on 2° from which the input locations are drawn. Again,
we stress that this framework has been (at least implicitly) used
in previous works on nonlinear system identification, see e.g. Lin
et al. (1996), Pillonetto, Chiuso, Quang, et al. (2011b), Sjéberg et
al. (1995), Shun-Feng and Yang (2002) and Suykens et al. (2002).
However, it has never been cast and studied in its full generality
under a RKHS setting.

Even if in this context the input space can turn out unbounded
(e.g. when the system input is Gaussian) and complex (e.g. 2" is a
function space itself in continuous-time), it will be shown that our
perspective is key to obtain the following achievements:

e linear and nonlinear system identification can be treated in
a unified way in both discrete- and continuous-time. Thus,
the estimator (1) can be used in many different contexts,
relevant for the control community, just changing the RKHS.
This is important for the development of a general theory
which links regularization in RKHS and system identifica-
tion;

e system input’s role in determining the nature of the RKHS
is made explicit. This will be also described in more detail
in the linear system context, illustrating the distinction be-
tween the concept of RKHSs .# of dynamic systems and that
of RKHSs .7 of impulse responses;

o for linear systems we provide a new and simple derivation
of the necessary and sufficient condition for RKHS stability
(Carmeli et al., 2006; Dinuzzo, 2015; Pillonetto et al., 2014)
that relies just on basic RKHS theory;

e inthe nonlinear scenario, we obtain a sufficient condition for
RKHS stability which has wide applicability. We also derive
a new stable kernel for nonlinear system identification;

e consistency of the RN (1) is proved under assumptions
suited to system identification, revealing the link between
consistency and RKHS stability.

The paper is organized as follows. In Section 2 we provide a brief
overview on RKHSs. In Section 3, the concept of RKHSs of dynamic
systems is defined by introducing input spaces 2" induced by
system inputs. The case of linear dynamic systems is then detailed
via its relationship with linear kernels. The difference between the



Download English Version:

https://daneshyari.com/en/article/7108570

Download Persian Version:

https://daneshyari.com/article/7108570

Daneshyari.com


https://daneshyari.com/en/article/7108570
https://daneshyari.com/article/7108570
https://daneshyari.com

