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a b s t r a c t

To gain a better understanding the synchronization mechanism of networked neurons, this paper studies
the synchronization control for a class of reaction–diffusion FitzHugh–Nagumo systems, associatedwith a
digraph containing at least one directed spanning tree. A novel control method adopting spatial sampling
strategies is proposed, in which the control inputs are constructed directly on the spatial means of system
state variables on sampling subsets. After discussing the existence and uniqueness of classical solutions,
we show analytically that the synchronization of the controlled systems is equivalent to that of the
corresponding FitzHugh–Nagumo systems under the corresponding control inputs. Based on the study
on general algebraic connectivity, a sufficient condition for the system synchronization is given, together
with case simulations to illustrate the effectiveness and potential of the new control method.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that the cerebral cortex in human brain is
a highly distributed system in which numerous areas operate in
parallel, exchange their results through reciprocal connections,
and create coherent states via self-organizing dynamics. In past
years, fruitful works were devoted to this operation mechanism.
See Brette (2012), Tuckwell and Rodriguez (1998) and the refer-
ences therein for some of them. It is universally accepted that
neural synchronization coordinates different areas by neural signal
transmission, playing an important role in the whole system. One
fundamental task is to understand the synchronizationmechanism
through certain quantitativemodels for neurons, such as Hodgkin–
Huxley models and FitzHugh–Nagumo systems.

Recent yearswitnessed someworks on synchronization control
for neural networks, where the neural dynamics is described by a
linear reaction–diffusion (RD for short) equation, and a neural net-
work is made up of neurons coupled by activation functions with
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possible transmission time-delays. For synchronizing a response
network to a master network, Hu, Yu, and Teng (2012) intro-
duced an intermittent control method, and Chen, Luo, and Zheng
(2016) and Liu, Zhang, and Xie (2016) showed impulsive control
methods. To guarantee a group of linearly-coupled networks syn-
chronize to a reference network, Wang, Wu, and Huang (2015a)
presented passivity-based methods, and Wang, Wu, Huang, and
Ren (2016) showed pinning control strategies. To guarantee
a swarm of linearly-coupled networks achieve synchronization
without reference, Wang, Wu, and Guo (2014) adopted adaptive
control strategies, and Wang, Wu, and Huang (2015b) employed
passivity-based methods. In these works, note that all activation
functions are globally Lipschitz, hence, the studied systems are
a class of RD systems of which the reaction terms are globally
Lipschitz with possible time-delays.

Recall that RD FitzHugh–Nagumo systems are a class of com-
mon quantitative models for real neural systems, in which the
cubic functions are not globally Lipschitz. To ensure a swarm of
RD FitzHugh–Nagumo systems achieve synchronization, Ambrosio
and Aziz-Alaoui (2012, 2013) showed the control inputs designed
directly with the difference of system state variables, followed by
the synchronization control (Ambrosio, Aziz-Alaoui, & Phan, 2015)
for RD systems of FitzHugh–Nagumo type.

Motivated by the work (Ambrosio & Aziz-Alaoui, 2012), in this
paper we study the synchronization control for a swarm of RD
FitzHugh–Nagumo systems whose solutions evolve toward homo-
geneous solutions, and the communication topology of the systems
is described by a digraph which contains at least one directed
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spanning tree. A novel control method is proposed for the systems,
in which the control inputs are designed directly on the spatial
means of system state variables on sampling subsets. After the
existence and uniqueness of classical solutions is discussed, our
analysis shows that the synchronization of the systems under our
proposed control inputs is equivalent to that of their corresponding
FitzHugh–Nagumo systems under the corresponding control in-
puts. Based on the investigation on general algebraic connectivity,
a sufficient condition for the system synchronization is shown
together with case simulations.

The originality in this paper mainly focuses on the proposed
control method. Note that the control design employs spatial sam-
pling strategies rather than the usual temporal sampling strategies.
Under certain choices of sampling subsets, the control design could
alleviate the work of collecting data for constructing the control
inputs, compared with those defined on the system state variables
in the full space. In fact, only the data of the state variables on
the sampling subsets is required to be collected in the proposed
method. In addition, the spatial sampling strategies adopted in the
proposed method is in line with the potential-output structure of
the neurons and their attached dendrites. Indeed, in the case when
the sampling subsets are 3-dimensional and enough small, their
sampled means can be viewed as the potentials at the contained
2-dimensional interfaces between neurons and their dendrites,
to be delivered to other neurons through the dendrites, by the
continuity of classical solutions.

The rest of the paper is organized as follows. In Section 2,
the synchronization problem is stated with the proposed control,
and the solution existence is discussed in its following section.
Section 4 is devoted to the synchronization equivalence. In Sec-
tion 5, general algebraic connectivity is studied, based on which
the sufficient condition for system synchronization is given in
Section 6. Before we conclude this paper, the case simulations are
demonstrated.

2. Synchronization problem and control design

First of all, let us introduce some notations used throughout this
paper. Let Ω ⊂ Rm be a bounded (nonempty) open set with rea-
sonably smooth boundary ∂Ω , and |Ω| denote the volume of the
setΩ := Ω ∪∂Ω . The notation∞means+∞. For any function ξ :

Ω × (0, ∞) → R, let ∇ξ (s, t) := (∂ξ (s, t)/∂s1, . . . , ∂ξ (s, t)/∂sm)⊤
denote its gradient function and △ξ (s, t) :=

∑m
j=1∂

2ξ (s, t)/∂s2j
denote its Laplacian function if they exist, where s := (s1, . . . , sm).
Let (L2k(Ω), ⟨·, ·⟩L2k ) denote the Hilbert space of the equivalence
classes of the measurable functions ξ : Ω → Rk such that
⟨ξ, ξ⟩L2k

:=
∫

Ω
(ξ (s))⊤ξ (s)ds < ∞, and define the corresponding

norm ∥ξ∥L2k
:= ⟨ξ, ξ⟩

1/2
L2k

for any ξ ∈ L2k(Ω). As usual, we write

L21(Ω) as L2(Ω), and ∥ · ∥L21
as ∥ · ∥L2 . Let ∂t denote the usual partial

differential operator ∂/∂t with respect to time t . For any n ∈ N,
define the set notation n := {1, 2, . . . , n}.

With the desire to further understand the neural synchroniza-
tion mechanism, this paper explores the synchronization control
problem of n > 1 RD FitzHugh–Nagumo systems having the form

Σi :

{
ϵ∂txi(s, t) = d1△xi(s, t) + c11xi(s, t) + c12yi(s, t)

+ f (xi(s, t)) + ui;

τ∂tyi(s, t) = d2△yi(s, t) + c21xi(s, t) + c22yi(s, t)
(1)

on the domainΩ×(0, ∞) for any i ∈ n and satisfying the zero-flux
Neumann boundary conditions

∂xi(s, t)/∂n = ∂yi(s, t)/∂n = 0 (2)

on the boundary ∂Ω for any t ∈ (0, ∞) and i ∈ n, where
symbol n denotes the exterior normal vector on ∂Ω . In system

(1), ϵ, τ , d1, d2 > 0 and c11, c12, c21, c22 ∈ R are the constant
coefficients, f : R → R is a cubic function having the form
f (x) = −x3 + bx2 + cx with constants b, c ∈ R, and each ui is
the control input to be designed.

In the case when input ui ≡ 0, system Σi in (1) generalizes
the seminal system (Nagumo, Arimoto, & Yoshizawa, 1962), and
provides a general form covering some RD systems studied in past
years, such as those in the works (Ambrosio & Aziz-Alaoui, 2012;
Chen, Jimbo, & Morita, 2015; He, Ai, & Liu, 2013). Note that the
function f in (1) covers some common cubic functions, such as
f1(x) = 3x − x3 and f2(x) = x(x − 1)(a − x) with a certain constant
a ∈ R. By the well-known inequality −z2 + 2dz ≤ d2 for any
d, z ∈ R, the cubic function f satisfies the following lemma.

Lemma 1. Consider the function f in (1). For any x, y ∈ R,
(i) the derivative f ′(x) ≤ M1, and (x − y)(f (x) − f (y)) ≤ M1(x − y)2
holds with the constant M1 := b2/3 + c;
(ii) given any constant a ∈ R, there exists a constant K > 0 such that
the inequality ax2 + xf (x) ≤ K holds.

Proof. (i) Note that f ′(x) = 3(−x2 + 2bx/3)+ c ≤ b2/3+ c = M1.
Following Taylor’s formula, (x − y)(f (x) − f (y)) ≤ (x − y)2(f ′(y) +

( 14 f
′′(y))2) = (x − y)2(− 3

4y
2

+
b
2y +

b2
4 + c). It follows that

(x − y)(f (x) − f (y)) ≤ M1(x − y)2.
(ii) Following −

1
2x

4
+ bx3 ≤

b2
2 x2, we have xf (x) + ax2 ≤ −

1
2x

4
+

( b
2

2 + c + a)x2 ≤ K , where K = (b2 + 2c + 2a)2/8. □

Throughout this paper, all systems in (1) are assumed to sat-
isfy Assumption 2 and to have the unique classical solutions
x1, y1, . . . , xn, yn on the domain Ω × [0, ∞). See the next section
for a discussion on the solution existence and uniqueness. For the
conditions in Assumption 2, condition (i) ensures that in the space
(L2(Ω), ∥·∥L2 ) there exists a time-invariant set for all state variables
xi(·, t) and yi(·, t) of the systems in (1), and condition (ii) ensures
that all xi(·, t) and yi(·, t) evolve toward homogeneous solutions in
the space, according to Propositions 4 and 7 in the next sections.
Note that there are at least three independent cases in which
condition (ii) can be satisfied. In the first two cases, the constant d1
is large enough and the constantM is small enough or nonpositive.
In the third case, the set Ω is convex and its diameter diam(Ω) is
small enough, by the formula λ△ ≥ (π/diam(Ω))2 from Payne and
Weinberger (1960).

Assumption 2. System (1) satisfies the following conditions:
(i) there exist certain constants M2 ∈ R and δ > 0 such that the
inequality z⊤Cz ≤ z⊤diag(M2, −δ)z holds for any z ∈ R2, where
C := (cij) ∈ R2×2 is thematrix defined by all the constants cij in (1).
(ii) the inequality d1λ△ > M := M1 + M2 holds, where M1 is
given in Lemma 1,M2 is listed in (i), and λ△ is the smallest positive
eigenvalue of Neumann operator −△ on the set Ω satisfying the
zero-flux Neumann boundary condition.

For the systems Σ1, . . . , Σn in (1), the control objective is to
make all of them achieve synchronization in the sense that, given
arbitrary admissible initial values to the systems, x1(s, t) = · · · =

xn(s, t) and y1(s, t) = · · · = yn(s, t) hold for any s ∈ Ω when
t → ∞. Following the continuity of classical solutions, note that
x1(s, t) = · · · = xn(s, t) and y1(s, t) = · · · = yn(s, t) hold for
any s ∈ ∂Ω when t → ∞, provided that the control objective
is achieved. To achieve synchronization, the coordination between
the variable states of the systems is usually necessary, in view of
the arbitrariness of the initial values. The next paragraph recalls
some concepts from graph theory for describing the communica-
tion topology of the systems.

Let Q := (VQ , EQ , AQ ) denote a simple weighted digraph, where
VQ = {vi : i ∈ n} is its vertex set, EQ ⊆ VQ × VQ is its directed
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