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a b s t r a c t

In this paper we address the question of robustness of critical bit rates for the stabilization of networked
control systems over digital communication channels. For a deterministic nonlinear system, the smallest
bit rate above which practical stabilization (in the sense of set-invariance) can be achieved is measured
by the invariance entropy. Under the assumptions of chain controllability and uniform hyperbolicity on
the set of interest, we prove that the invariance entropy varies continuously with respect to system
parameters. Hence, in this case the critical bit rate is robust with respect to small perturbations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In networked control, the communication between sensors,
controllers and actuators is accomplished through a shared digital
communication network. There are several aspects of such net-
works which put severe constraints on the available data rates.
In the first place, the digital nature of the communication chan-
nels puts a limit on the number of bits that can be transmitted
reliably in one unit of time. This naturally leads to the problem of
determining the smallest channel capacity or bit rate above which
a certain control objective such as stabilization can be achieved.
Numerous authors have studied this problemboth in deterministic
and stochastic setups, for a variety of control objectives, under
different assumptions on the network topologies and on the coding
and control policies, see, e.g., the papers (Colonius, 2012; Colonius
& Kawan, 2009; Delvenne & Kawan, 2016; Liberzon & Hespanha,
2005; Matveev & Pogromsky, 2016; Nair, Evans, Mareels, & Moran,
2004), the monographs (Kawan, 2013; Matveev & Savkin, 2009;
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Yüksel & Başar, 2013) and the surveys (Franceschetti & Minero,
2014; Nair, Fagnani, Zampieri, & Evans, 2007). In many of these
works, expressions or estimates of the critical capacities in terms of
dynamical entropies or Lyapunov exponents have been obtained.

In practice, there are always unknownparameters in the system
under consideration. Therefore, one important issue is the robust-
ness of the critical bit rates under variation of system parameters.
Since both entropy and Lyapunov exponents as functions of the
dynamical system are known to have jump discontinuities, one
cannot expect that critical bit rates behave robustly without ap-
propriate assumptions on the system under consideration. To the
best of our knowledge, this issue so far has only been addressed
in Matveev and Pogromsky (2016) for state estimation objectives.
In the paper at hand, we identify a setup in which the desired
robustness property is satisfied for the problem of practical sta-
bilization (i.e., set-invariance).

The paper (Nair et al., 2004) introduced the notion of topological
feedback entropy as a measure for the smallest rate of information
above which a compact subset of the state space can be rendered
invariant by a controller which receives the state information via
a noiseless discrete channel. An equivalent notion, called invari-
ance entropy, was introduced in Colonius and Kawan (2009). The
monograph (Kawan, 2013) presents the foundations of a theory
which aims at a characterization of invariance entropy in terms
of dynamical quantities such as Lyapunov exponents and escape
rates. This works particularly well under the assumption that
the subset to be stabilized has a uniformly hyperbolic structure.
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In fact, for a uniformly hyperbolic chain control set of a control-
affine system, the paper (Da Silva & Kawan, 2016b) provides a
closed expression of the invariance entropy in terms of Lyapunov
exponents. Uniformly hyperbolic chain control sets are also known
to vary continuously in the Hausdorff metric under variation of
system parameters, cf. Colonius and Du (2001). We use these re-
sults to prove that the invariance entropy of a uniformly hyperbolic
chain control set varies continuously with respect to parameters.
Uniformly hyperbolic chain control sets arise around hyperbolic
equilibrium points when the control range is sufficiently small
and certain regularity assumptions are satisfied. In Colonius and
Lettau (2016) an example of a stirred tank reactor is studied, where
this happens. A large class of algebraic examples for uniformly
hyperbolic chain control sets was identified in Da Silva and Kawan
(2016a).

The paper is organized as follows. In Section 2, we give a review
of control-affine systems and invariance entropy. In Section 3, we
provide a new justification that the invariance entropy is ameasure
for the smallest data rate abovewhich a set can be rendered invari-
ant by a symbolic coding and control scheme. Section 4 contains
the proof of the main result about the continuity of the invariance
entropy on a uniformly hyperbolic chain control set. The proof uses
semicontinuity properties of spectral sets for additive and subad-
ditive cocycles over control flows of parametrized control-affine
systems, which are derived in Section 4.1. The actual proof is given
in Section 4.2. Section 5 discusses an example, where the nominal
system is linear and Section 6 outlines some future directions.
Some proofs and reviews of technical concepts are presented in
Appendices A–C.

2. Preliminaries

Notation. All manifolds considered in this paper are smooth,
i.e., equipped with a C∞ differentiable structure. If f : M → N
is a differentiable map between smooth manifolds M and N , then
df (x) : TxM → Tf (x)N denotes its derivative at x ∈ M . On a
Riemannian manifold M , we always write d(x, y) for the geodesic
distance of two points x, y ∈ M . The norm on each tangent
space TxM is simply denoted by |·|. We write intA and clA for the
interior and closure of a set A, respectively. By dist(x, A) we denote
infy∈Ad(x, y). If u1 : [0, τ1] → U and u2 : [0, τ2] → U are
functions, wewrite u1u2 : [0, τ1+τ2] → U for their concatenation,
i.e., (u1u2)(t) = u1(t) for t ∈ [0, τ1] and (u1u2)(t) = u2(t − τ1) for
t ∈ (τ1, τ1 + τ2]. We also write un for the concatenation of n copies
of u.

2.1. Control-affine systems

A control-affine system is given by

ẋ = f0(x) +

m∑
i=1

ui(t)fi(x), u ∈ U, (1)

where f0, f1, . . . , fm are smooth vector fields on a Riemannianman-
ifold M and U = L∞(R,U) for a compact and convex set U ⊂ Rm

with 0 ∈ intU .
By ϕ(t, x, u) we denote the unique solution of (1) for the control

function u ∈ U , satisfying the initial condition ϕ(0, x, u) = x. For
simplicity, we assume that all solutions are defined on R, which
yields a transition map

ϕ : R × M × U → M, (t, x, u) ↦→ ϕ(t, x, u).

We also write ϕt,u(x) = ϕ(t, x, u). The set U of control functions
becomes a compact metrizable space with the weak∗-topology of
L∞(R,Rm) = L1(R,Rm)∗ and ϕ can be extended to a continuous
skew-product flow

Φ : R × (U × M) → U × M, Φt (u, x) = (θtu, ϕ(t, x, u)),

called the control flow of the control system (1). Here θ : R× U →

U , θtu = u(t + ·), is the shift flow on U . These general facts can be
found in Colonius and Kliemann (2000).

The set of points reachable from x up to time T is

O+

≤T (x) :=

⋃
u∈U,t∈[0,T ]

{ϕ(t, x, u)}

and O+(x) :=
⋃

T>0O
+

≤T (x) is the positive orbit of x. With O−

≤T (x)
andO−(x) we denote the corresponding sets for the time-reversed
system. We say that system (1) is locally accessible from x if intO±

≤T
(x) ̸= ∅ for all T > 0. A sufficient condition for local accessibility is
the Lie algebra rank condition, briefly LARC. This condition is satisfied
at x ∈ M if the Lie algebra L generated by the vector fields
f0, f1, . . . , fm satisfies L(x) = {f (x) : f ∈ L} = TxM .

A set D ⊂ M is a control set of (1) if it is maximal w.r.t. set
inclusion with the following properties:

(i) D is controlled invariant, i.e., for each x ∈ D there is u ∈ U
with ϕ(R+, x, u) ⊂ D.

(ii) Approximate controllability holds on D, i.e., D ⊂ clO+(x) for
all x ∈ D.

The lift of a control set D to U × M is defined by

D := cl {(u, x) ∈ U × M : ϕ(R, x, u) ⊂ intD} .

Control sets with nonempty interior have the no-return property:
If x ∈ D and ϕ(τ , x, u) ∈ D for some τ > 0 and u ∈ U , then
ϕ(t, x, u) ∈ D for all t ∈ [0, τ ].

A chain control set of (1) is a set E ⊂ M which is maximal with
the following properties:

(i) E is all-time controlled invariant, i.e., for each x ∈ E there is
u ∈ U with ϕ(R, x, u) ⊂ E.

(ii) Chain controllability holds on E, i.e., for each two x, y ∈ E
and all ε, T > 0 there are n ∈ N, controls u0, . . . , un−1 ∈ U ,
states x0 = x, x1, . . . , xn−1, xn = y and times t0, . . . , tn−1 ≥

T such that

d(ϕ(ti, xi, ui), xi+1) < ε, i = 0, 1, . . . , n − 1.

The lift of a chain control set E to U × M is defined by

E := {(u, x) ∈ U × M : ϕ(R, x, u) ⊂ E} .

The set E is a closed invariant set of the control flow and it is com-
pact if E is compact. If D is a control set such that local accessibility
holds on intD ̸= ∅, then D is contained in a unique chain control
set (see Colonius & Kliemann, 2000, Ch. 4). Moreover, the lifts of
the chain control sets are the maximal invariant chain transitive
sets of the control flow (see Appendix B for the definition of chain
transitivity).

A compact chain control set E is called uniformly hyperbolic if
there exists a decomposition

TxM = E−

u,x ⊕ E+

u,x ∀(u, x) ∈ E

with subspaces E±
u,x satisfying

(H1) dϕt,u(x)E±
u,x = E±

Φt (u,x) for all (u, x) ∈ E , t ∈ R.
(H2) There exist constants 0 < c ≤ 1 and λ > 0 such that for all

(u, x) ∈ E ,⏐⏐dϕt,u(x)v⏐⏐ ≤ c−1e−λt
|v| for all t ≥ 0, v ∈ E−

u,x,⏐⏐dϕt,u(x)v⏐⏐ ≥ ceλt |v| for all t ≥ 0, v ∈ E+

u,x.

From (H1) and (H2) it follows that E±
u,x depend continuously on

(u, x), cf. Kawan (2013, Ch. 6). We write

J+ϕt,u(x) :=
⏐⏐ det dϕt,u(x)|E+

u,x
: E+

u,x → E+

Φt (u,x)

⏐⏐
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