
Automatica 93 (2018) 20–25

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Dynamic controllers for column synchronization of rotation matrices:
A QR-factorization approach✩

Johan Thunberg *, Johan Markdahl, Jorge Gonçalves
Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg

a r t i c l e i n f o

Article history:
Received 9 December 2016
Received in revised form 29 September
2017
Accepted 9 January 2018

Keywords:
Multi-agent systems
Attitude synchronization
Consensus algorithms
Sensor networks
Network topologies

a b s t r a c t

In the multi-agent systems setting, this paper addresses continuous-time distributed synchronization
of columns of rotation matrices. More precisely, k specific columns shall be synchronized and only the
corresponding k columns of the relative rotations between the agents are assumed to be available for the
control design. When one specific column is considered, the problem is equivalent to synchronization on
the (d − 1)-dimensional unit sphere and when all the columns are considered, the problem is equivalent
to synchronization on SO(d). We design dynamic control laws for these synchronization problems. The
control laws are based on the introduction of auxiliary variables in combination with a QR-factorization
approach. The benefit of this QR-factorization approach is that we can decouple the dynamics for the k
columns from the remaining d−k ones. Under the control scheme, the closed loop system achieves almost
global convergence to synchronization for quasi-strong interaction graph topologies.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers multi-agent systems continuously evolv-
ing on SO(d), i.e., the set of d × d rotation matrices. The agents
interact locally with each other and the neighborhood structure
is determined by an interaction graph that is quasi-strongly con-
nected. For such systems, we address the following synchro-
nization problem. How to design control laws in the body fixed
coordinate frames of the agents such that k specific columns of
the rotation matrices asymptotically synchronize (converge to
the set where they are the same and equal to the columns of a
constant rotation matrix) as time goes to infinity. The problem
is, in general, a synchronization problem on a Stiefel manifold.
The control laws shall be designed by using the corresponding
k columns of the relative rotations between the agents (and not
the other columns). Such control laws can be used to solve the
synchronization problem on the unit sphere; consider for example
the case where satellites in space only monitor one axis of each of
its neighbors. But it can also be used in problems where various
degrees of rotations are available, or the problem where complete
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rotations are available. To solve the problemwe introduce auxiliary
variables and use a QR-factorization approach. The benefit of this
approach is that the dynamics of the k columns considered can be
decoupled from the dynamics of the remaining d − k ones.

Two important special cases of the problem considered are syn-
chronization of whole rotation matrices, i.e., synchronization on
SO(d), and synchronization of one specific column vector, i.e., syn-
chronization on the (d − 1)-sphere. In these cases, for obvious
reasons of applicability, the dimensions d = 2 and d = 3 have
been mostly considered. The distributed synchronization problem
on the unit sphere has been studied from various aspects (Li, 2015;
Li & Spong, 2014;Olfati-Saber, 2006; Sarlette, 2009). Recently there
have been some new developments (Markdahl & Goncalves, 2015;
Markdahl, Wenjun, Hu, Hong, & Goncalves, 2016). Lageman and
Sun (2016), Markdahl and Goncalves (2016) Markdahl, Thunberg,
and Gonçalves (2017), Markdahl et al. (2016), and Pereira and Di-
marogonas (2015). In Markdahl et al. (2017) the classical geodesic
control law is studied for undirected graph topologies. Each agent
moves in the tangent space in a weighted average of the directions
to its neighbors. Almost global synchronization is de facto shown
by a characterization of all the equilibria; the equilibria that are
not in the synchronization set are shown to be unstable and the
equilibria in the synchronization set are shown to be stable. The
analysis can be seen to parallel the one in Tron, Afsari, and Vidal
(2012) (also for undirected topologies) for the case of synchro-
nization on SO(3), where intrinsic control laws are designed for
almost global synchronization. For the case d = 2 an almost
global synchronization approach has been presented for directed
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topologies and the 1-sphere (Scardovi, Sarlette, & Sepulchre, 2007).
That approach is a special case of the one in Sarlette and Sepulchre
(2009).

The problem of synchronization on SO(3) has been extensively
studied (Deng, Liu, Wang, & Baras, 2016; Ren, 2010; Sarlette,
Bonnabel, & Sepulchre, 2010; Thunberg, Song, Montijano, Hong, &
Hu, 2014; Tron, Afsari, & Vidal, 2013; Tron & Vidal, 2014). Often
the control algorithms are of gradient descent types and assume
undirected topologies (Sarlette, Sepulchre, & Leonard, 2009; Thun-
berg, Montijano, & Hu, 2011). Local convergence results are often
obtained (Thunberg, Goncalves, & Hu, 2016; Thunberg et al., 2014).
If a global reference frame is used, one can show almost global
convergence (Thunberg et al., 2014)—this is not allowed in the
design of our control laws, only relative information is to be used.
As mentioned above, Tron et al. (2012) provide a control algorithm
for almost global convergence. The idea is to use so-called shaping
functions where a gain constant can be chosen large enough to
guarantee almost global consensus. The algorithm is defined in
discrete time.

By introducing auxiliary state variables based on the QR
-factorization of matrices, this work provides a dynamic feedback
control algorithm for synchronization of the k first columns of
the rotation matrices of the agents. The dynamics of the auxiliary
variables follow a standard consensus protocol. The idea of using
auxiliary or estimation variables with such dynamics is not new.
Early works include Sarlette and Sepulchre (2009) and Scardovi
et al. (2007), where the former addresses the 1-sphere and the
latter addresses manifolds whose elements have constant norms
and satisfy a certain optimality condition. Suchmanifolds areSO(d)
and the Grassmannmanifold Grass(k, d). If the approach in Sarlette
and Sepulchre (2009) is used to synchronize k columns of the
rotation matrix where k < d− 1, then the entire relative rotations
are used in the control design, which is not in general allowed
in the problem considered here. In our proposed QR-factorization
approach, only the corresponding k columns of the relative rota-
tions are used in the controllers. Under the control scheme, the
closed loop dynamics achieves almost global convergence to the
synchronization set for quasi-strong interaction topologies.

An extended version of this manuscript, containing all the
proofs, is available on arXiv, see Thunberg, Markdahl, and
Goncalves (2017).

2. Preliminaries

We start this section with some set-definitions. We define the
special orthogonal group

SO(d) = {Q ∈ Rd×d
: Q TQ = Id, det(Q ) = 1}

and set of skew symmetric matrices

so(d) = {Ω ∈ Rd×d
: ΩT

= −Ω}.

The d-dimensional unit sphere is

Sd
= {y ∈ Rd+1

: ∥y∥2 = 1}.

The set of invertible matrices in Rd×d is

GL(d) = {Q ∈ Rd×d
: det(Q ) ̸= 0}.

We will make use of directed graphs, which have node set
V = {1, 2, . . . , n} and edge sets E ⊂ V × V . Such a directed
graph G = (V, E) is quasi-strongly connected if it contains a rooted
spanning tree or a center, i.e., there is one node to which there is
a directed path from each other node in the graph. A directed path
is a sequence of nodes such that any two consecutive nodes in the
path comprises an edge in the graph. For G = (V, E) we define
Ni = {j ∈ V : (i, j) ∈ E} for all i.

We will consider a multi-agent systemwith n agents. There are
n coordinate systems Fi, each of which corresponding to a unique
agent i in the system. There is also a world (or global) coordinate
system FW . At each time t , each coordinate system Fi is related to
the global coordinate system FW via a rotation Qi(t) ∈ SO(d). This
means that Qi(t) transforms vectors in Fi to vectors in FW .

For all i, let Qi(t, k) be the ‘‘tall matrix’’ consisting of the first
k columns of Qi(t). Thus, Qi(t, d) = Qi(t) and Qi(t, 1) is the first
column of Qi(t). All the columns of Qi(t, k) are obviously mutually
orthogonal and each one an element of the (d − 1)-sphere. Let
Qij(t) = Q T

i (t)Qj(t) and Qij(t, k) = Q T
i (t, d)Qj(t, k) for all i, j.

These matrices comprise the relative transformations between
the coordinate frames Fj and Fi and the k first columns thereof,
respectively.

The matrix Ri(t, d), or shorthand Ri(t), is an element of Rd×d

for all i, t . The matrix Ri(t, k) ∈ Rk×k is the upper left k × k
block matrix of the matrix Ri(t). These Ri(t, k)’s are communi-
cated between the agents. For Ri(t, k) invertible we define Rij(t, k)
as Ri(t, k)R−1

j (t, k). Observe the difference of where the matrix
inverse appears between Qij(t, k) and Rij(t, k), i.e., Qij(t, k) =

Q−1
i (t, d)Qj(t, k), whereas Rij(t, k) = Ri(t, k)R−1

j (t, k). Let Q (t, k) =

[Q T
1 (t, k),Q

T
2 (t, k), . . . ,Q

T
n (t, k)]

T
∈ Rnd×k and R(t, k) = [RT

1(t, k),
RT
2(t, k), . . . , R

T
n(t, k)]

T
∈ Rnk×k.

The functions low(·) and up(·) are defined for matrices in
Rm1×m2 for all m1 ≥ m2. The function low(·) returns a matrix of
the same dimension as the input, a matrix inRm1×m2 that is, where
each (i, j)-element of thematrix is equal to that of the input matrix
if i > j and equal to 0 if i ≤ j. The function up(·) returns a matrix
in Rm2×m2 ; each (i, j)-element of the matrix is equal to that of the
input matrix if i ≤ j and equal to 0 if i > j.

We continue by introducing two assumptions that will be used
in the problem formulation in the next section.

Assumption 1 (Connectivity). It holds that G is quasi-strongly
connected.

Assumption 2 (Dynamics). The time evolution of the state of each
agent i is given by
d
dt

Qi(t, d) = Qi(t, d)Ui(t, d), (1)

where Ui(t, d) ∈ so(d) and Qi(0, d) ∈ SO(d). In particular it holds
that
d
dt

Qi(t, k) = Qi(t, d)Ui(t, k), ∀k ∈ {1, 2, . . . , d}, (2)

where Ui(t, k) = Ui(t, d)[Ik, 0]T .

The Ui(t, d)’s are the controllers we are to design. An important
thing to note in (1) is that Ui(t, d), or rather the columns thereof,
are defined in the Fi-frames. If those would have been defined in
the world frame FW , the agents would have needed to know their
own rotations to that frame, i.e., the Qi-matrices. Those matrices
are not assumed to be available for the agents.

We let (SO(d))n be the following subset of Rnd×d,

{Z : Z = [ZT
1 , ZT

2 , . . . , ZT
n ]

T , Zi ∈ SO(d) ∀i}.

We let (GL(d))n be the following subset of Rnd×d,

{Z : Z = [ZT
1 , ZT

2 , . . . , ZT
n ]

T , Zi ∈ GL(d) ∀i}.

3. Problem formulation

The goal is to design Ui(t, d) (and in particular Ui(t, k)) as
a dynamic feedback control law such that the Qi(t, k)-matrices
asymptotically aggregate or converge to the synchronization set.
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