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a b s t r a c t

Focusing on the trajectory curvature, this paper presents an innovative and analytical guidance law for the
construction of geometrically convex trajectories. Moving along such trajectories, the lander can increase
the probability of a safe landing in hazardous terrains. Initially, the curvature theorems of the powered
descent trajectories are developed. In these theorems, the inner relationship between trajectory curvature
and lander states is revealed, and the state constraints for a geometrically convex trajectory are derived.
Next, the trajectory curvature guidance is developed in an analytical formulation by satisfying the state
constraints for a convex trajectory, and the selection of the key guidance parameters is investigated.
Finally, the performance of the trajectory curvature guidance is analyzed in detail, illustrating its superior
hazard avoidance and the camera’s field of view.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

To date, all Mars landers have been targeted to large, flat areas
based on the ‘‘safety first’’ principle, neglecting much of the sci-
entific interest associated with other possible landing sites. Future
Mars exploration missions would prefer a complex landing terrain
to further the mission’s scientific goals, such as detecting organics
and signs of life (Grant et al., 2011). To achieve safe landing in
regions with undulating terrain, powered descent guidance with
an obstacle-avoidance function must be developed. In addition,
the guided descent trajectory should keep the landing site in the
field of view (FOV) of a navigation camera or hazard-detection lidar
(Gerth & Mooij, 2014).

Motivated by the planetary landingmissions, substantial atten-
tion has been paid to powered descent guidance in the last fifty
years. The engineering-applied gravity turn and Apollo second-
order polynomial guidance contributed substantially to the pre-
vious Mars landing missions because of their simplicity and
reliability (Citron, Dunn, & Mesissinger, 1964; Klumpp, 1974;
McInnes, 1996). However, these algorithms with simple formu-
lation considered no performance index or constraint, degrading
their overall performance and impeding applications in hazardous
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terrains. To obtain better performance, various descent-guidance
laws have been proposed and developed, such as fuel-optimal
guidance (Liu, Duan, & Teo, 2008; Scott, 1986; Topcu, Casoliva, &
Mease, 2007), artificial potential function guidance (APFG) (Lopez
& McInnes, 1995; McInnes, 1995), convex-programming guidance
(CPG) (Açıkmeşe & Blackmore, 2011; Açıkmeşe & Ploen, 2007;
Harris & Açıkmeşe, 2014), andwaypoint-optimized guidance (Guo,
Hawkins, & Wie, 2013). Each of them has a distinctive feature and
occupies an important position in the field of powered descent
guidance. In terms of their obstacle-avoidance ability, APFG and
CPG deserve particular attention. Lyapunov stability theory is the
basis of APFG. By establishing a potential function in which the
obstacles are set to a high-potential area, the lander can achieve a
soft landing without violating the terrain constraints. CPG exploits
the concept of numerical trajectory optimization, which considers
many complex constraints, including the glide slope constraint
that ensures that the optimized trajectory is not too shallow
and, thus, that the lander can avoid raised obstacles (Blackmore,
Acikmese, & Scharf, 2010). Solving the classical optimal control
problem with fuel-optimal performance index subjected to state
and control constraints, CPG represents the state-of-the-art open-
loop powered descent guidance by improving the optimization
efficiency and ensuring the global optimality. Imperfectly, no ana-
lytical formula of the control acceleration can be obtained, causing
a heavy burden for onboard computer. In fact, that is a common
challenge to solve such a complex optimal control problem an-
alytically. Throughout the history of powered descent guidance,
performance trades were inevitable since analytical results could
only be obtained by neglecting the nonlinearity and constraints,
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Fig. 1. Superiority of a convex trajectory in terms of hazard avoidance and the
camera’s FOV.

and numerical optimization was necessary when considering en-
gineering constraints.

Unlike previous research studies, this paper focuses on the tra-
jectory geometry and develops a closed-loop analytical guidance
law to construct geometrically convex trajectories. Moving along a
convex trajectory, the lander can avoid undulating obstacles and
more likely maintain the visibility of the designed landing area
(Fig. 1). That is how the proposed guidance law satisfies the state
constraints. The control thrust saturations are fulfilled by adjusting
parameters in the analytical guidance law. The fuel consumption
relates to guidance parameters is also analyzed to obtain better pa-
rameters selection for less fuel consumption. Consequently, even
though no classical optimal control problem under constraints is
formulated or solved, the proposed guidance law considers both
state and control constraints, and fuel consumption performance.
Moreover, the control acceleration can be solved rapidly onboard
because it does not rely on a numerical solver.

To develop such a guidance law, this paper first expresses
the trajectory curvature using the lander states and then derives
the state constraints for convex trajectories. Next, the trajectory
curvature theorems are developed and proved. These theorems
clarify that the trajectory curvature is determined by the initial
lander states and establish a basis for the proposed innovative
guidance. Subsequently, the trajectory curvature guidance (TCG) is
developed to satisfy the state constraints for convex trajectory by
utilizing a constant acceleration phase with its proper magnitude
and duration calculated analytically. Finally, the performance of
the developed guidance algorithm is analyzed in terms of obstacle
avoidance, constraint satisfaction, fuel consumption, and camera’s
FOV of the landing site.

2. Curvature theorems of powered descent trajectories

To develop the trajectory curvature guidance, the relationship
between trajectory curvature and lander states should first be
clarified. The state constraints required by a geometrically convex
trajectory should also be derived. In this section, the trajectory
curvature is expressed by the lander’s position and velocity. Then,
the advantage of the trajectory convexity is clarified. Furthermore,
curvature theorems of the powered descent trajectories that reveal
the influence of initial states on the shape of the powered descent
trajectory are developed and proved. These analyses constitute the
basis of trajectory curvature guidance.

2.1. Relationship between trajectory curvature and lander states

The powered descent phase is investigated in the target-fixed
reference system. The origin is located at the landing target, z axis
points to the zenith, x axis is perpendicular to z axis and located
in the plane composed of z axis and the lander’s initial position,
with the positive direction towards the lander, and y axis follows
the right-hand principle. The Oxz plane is defined as longitudinal

motionplaneuponwhich the lander’smotionmainly concentrates.
The powered descent trajectory and guidance law will mainly be
discussed in this plane.

A planar curve is geometrically convex if and only if d2z/dx2 <

0. The following derivation demonstrates that the condition for
negative curvature can be expressed by the lander’s acceleration
and velocity.
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where x and z are position components of the lander in the lon-
gitudinal plane of target-fixed reference system, vx and vz are
corresponding velocity component, ax and az are corresponding
acceleration components, and t is the flight time. If the lander’s
initial horizontal velocity is negative, the condition for a convex
curve can be expressed as

azvx − axvz > 0 (2)

Similarly, the conditions for a concave curve and a straight line are
given, respectively, by

azvx − axvz < 0 (3)
azvx − axvz = 0 (4)

The optimal guidance (OPG) law considering only the con-
straints of the terminal states in the linear powered descent dy-
namics (D’Souza, 1997; Guo et al., 2013) is given by D’Souza (1997)[ax
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where acx, acy, and acz represent the tri-axial control accelerations,
g is the constant local gravity, and tgo is the time-to-go,which is the
remaining time of engine-burning at any instant of the powered
descent, and a synchronizing variable for ensuring simultaneous
solutions of all-dimension control acceleration (Cherry, 1964). It is
the positive root of the following equation:

g2t4go/2 − 2(v2
x + v2

y + v2
z )t

2
go − 12(xvx + yvy + zvz)tgo

−18(x2 + y2 + z2) = 0
(6)

Focusing on the planar trajectory (located in the Oxz plane of the
target-fixed reference system), Eq. (5) is simplified as[
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Defining α = −4/tgo and β = −6/t2go, Eq. (7) can be divided into
the following two equations:

ax = αvx + βx (8)
az = αvz + βz (9)

Substituting Eqs. (8)–(9) into Eqs. (2)–(4), conditions for a convex
curve, concave curve, and straight line are derived, respectively, as

zvx − xvz < 0 (10)
zvx − xvz > 0 (11)
zvx − xvz = 0 (12)

Eqs. (10)–(12) illustrate that the sign of the trajectory curvature
can be expressed by the lander states. If the inequality constraint in
Eq. (10) is always satisfied in the powered descent phase, thewhole
trajectory is geometrically convex. Note that these conclusions
are obtained under the assumption vx < 0. If the direction of
the horizontal velocity is reversed, the inequality constraints for
convex and concave trajectories are interchanged. Thus, the strict
state constraints for a convex trajectory should be the combination
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