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a b s t r a c t

We explore how to overcome phase damping decoherence when imperfect projective measurements
are available. It is demonstrated that a ‘‘relaxed’’ control goal may be achieved by combining simple
open-loop coherent control with periodic imperfect projective measurements. Inspired by the idea of
soft optimization, we propose to control the state of a qubit staying near a reference pure state with
high probability for a sufficiently long time. This ‘‘relaxed’’ control goal is expressed in terms of three-
parameter performance indexes, and it is in remarked contrast to the ‘‘hard’’ requirement that the state
of the controlled qubit always stays at the reference pure state.Wenot only establish necessary conditions
for relaxed robust problems, but also present sufficient conditions for the existence of a solution to the
relaxed robust problems. With the help of main results, one can estimate how the maximal total time
depends on the target state and the perturbation bounds. Furthermore, it is demonstrated that imperfect
realization of projective measurements will worsen the three-parameter performance indexes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

As an important precondition for constructing quantum in-
formation systems (Nielsen & Chuang, 2004), decoherence sup-
pressing is one of the key problems in the study of quantum
coherent control (Shapiro & Brumer, 2003) and quantum feedback
control (Jacobs, 2014; Wiseman & Milburn, 2010). In previous
research, various methods have been developed against decoher-
ence, e.g., quantum error-avoiding codes (Duan &Guo, 1997, 1998;
Lidar, Chuang, & Whaley, 1998; Zanardi & Rasetti, 1997), quantum
error-correction codes (Cirac, Pellizzari, & Zoller, 1996; Knill &
Laflamme, 1997; Shor, 1995; Steane, 1995; Zurek & Laflamme,
1996), BangBang control (Pan, Xi, & Gong, 2011; Viola, Knill, &
Lloyd, 1999; Viola & Lloyd, 1998; Viola, Lloyd, & Knill, 1999), open
loop coherent control (Lidar & Schneider, 2005; Zhang, Wu, Li,
Tarn, &Wu, 2007), quantum feedback control (Fortunato, Raimond,
Tombesi, & Vitali, 1999; Goetsch, Tombesi, & Vitali, 1996; Tombesi
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& Vitali, 1995; Vitali, Tombesi, & Milburn, 1997, 1998) and Zeno
control scheme (Facchi & Pascazio, 2001, 2002).

The interaction with environment not only causes decoherence
of the target quantum system, but also leads perturbations to the
sensor or the controller. Such perturbations bring uncertainties
into the control systems and heavily impact their performance. For
instance, quantum tracking controlwill be not feasible if there exist
uncertainties in the knowledge of initial state (Zhang, Dai, Xi, Xie,
& Hu, 2007). To deal with the uncertainties in quantum systems,
quantum robust control has been studied by many researchers.
For example, Bierzychudek et al. have designed H-infinity con-
trollers for cryogenic current comparators (Bierzychudek, Goetz,
Sanchez-Pena, Iuzzolino, & Drung, 2017; Bierzychudek, Sanchez-
Pena, & Tonina, 2013). D. Dong and his coauthors have worked on
robust control of quantum systems against several uncertainties
(Dong, Chen, Qi, Petersen, & Nori, 2015; Dong, Lam, & Petersen,
2010; Dong, Mabrok et al., 2015; Dong & Petersen, 2012; Dong
et al., 2016). Maalouf et al. have investigated the control for lin-
ear quantum systems by solving the quantum and the equiva-
lent classical stochastic differential equations (Maalouf & Petersen,
2011a, b, 2012, 2014). A robust adaptive measurement scheme
(Tanaka & Yamamoto, 2012) has also been proposed for qubit-
state preparation against the uncertainty of the unitary evolu-
tion. For certain environmental perturbations and specific system
structures, a variety of robust control schemes have been given
in aforementioned investigations. However, how to overcome the
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uncertainty in quantummeasurements, to our knowledge, has not
been explored carefully.

In this paper, we explorewhether or not dephasing suppression
is feasible when perturbed projective measurements are available.
Here we consider the dephasing suppressing problem for a qubit
subject to Markovian environment. In contrast to the strict fidelity
requirement that the controlled qubit should always stay at the
reference pure state, we borrow the idea about soft optimiza-
tion for hard problems (Ho, Zhao, & Jia, 2007) and try to make
the controlled qubit stay near a reference pure state with high
probability for sufficiently long time (Zhang, Dai et al., 2007).
Aiming at this relaxed control goal, we develop an experimental
imperfection tolerating scheme by combining simple open loop
controls with periodic imperfect projective measurements. Since
the projective measurements are imperfect, the fidelity function
and the measurement probability are uncertain. Fortunately, both
of their lower bound functions can be exactly decided by the target
state of the system, control parameter and perturbation bounds.
Therefore the measurements period can be designed based on
the lower bound functions. Furthermore, it is revealed that more
uncertainties or perturbations lead to worse control performance,
and our scheme may ensure longer performance preserving time
with smaller control parameter.

The rest of this paper are organized as follows. The relaxed
robust control problem is presented in Section 2. We deduce our
main results in Section 3, and further give some comments about
our control scheme. We end the paper with a concluding remark
and a short discussion of further work in Section 4.

2. Problem description

In this paper, we explore how to suppress dephasing deco-
herence for a qubit Q subject to Markovian dynamics when pro-
jective measurements are perturbed. We consider a model of a
two-state system coupling to a bosonic heat bath (Leggett et al.,
1987). This open system model is widely used in the study of
quantum superconducting circuits (Forn-Diaz et al., 2017; Kato,
Golubov, & Nakamura, 2007; Makhlin, Schon, & Shnirman, 2004)
and cavity quantum electrodynamics (Albert, Scholes, & Brumer,
2011; Nevado & Porras, 2013; Xue, Zhong, Li, & Sun, 2007), and is
familiar in the implementation of quantum information processing
(Hao, Tong, & Zhu, 2013; Teixeira, Kapale, Paternostro, & Semiao,
2016; Ye, Shalashilin, & Serafini, 2012). The dynamics of thismodel
can be described by following spin-boson master equation (Paz &
Zurek, 2001; Weiss, 2012)

∂ρ(t)
∂t

= −
i
h̄
[HR, ρ] −

i
h̄
z∗(t)σxρ(t) +

i
h̄
z(t)ρ(t)σx

−
1
h̄
D̃(t)[σz, [σz, ρ]] −

1
h̄
z(t)σzρσy −

1
h̄
z∗(t)σyρσz, (1)

with σα, α ∈ {x, y, z}, the Pauli matrices. Here

HR =
1
2
h̄∆σx (2)

is the Hamiltonian of the spin qubit,

D̃(t) =

∫ t

0
dsν(s) cos∆s,

z(t) =

∫ t

0
ds (ν(s) + iη(s)) sin∆s (3)

are coefficients of dephasing and of systemdecay, respectively. The
bare frequency ∆ denotes the tunneling amplitude between two
states of the spin system. By employing J(ω) for the environmental
spectral density and N(ω) for the mean occupation number of the

environmental oscillators, the noise kernel ν(t) and the dissipation
kernel η(t) can be respectively expressed as

ν(t) =

∫
∞

0
dωJ(ω) cosωt(1 + 2N(ω)), (4)

η(t) =

∫
∞

0
dωJ(ω) sinωt. (5)

In this paper, we focus on suppressing the influence of pure
dephasing on spin qubit Q , and hence assume that D̃(t) = h̄γ /2 >
0 and z(t) = 0. Thus the controlled spin-boson system can be
described by following master equation
∂ρ(t)
∂t

= −
i
h̄
[Ĥ, ρ] + γ (σzρσz − ρ), (6)

where the control Hamiltonian Ĥ is the original Hamiltonian HR
modulated by control fields. It can be generally described as a
composition of Pauli matrices

Ĥ =
h̄
2

(
(ω0(t) +∆) σx + ω1(t)σy + ω2(t)σz

)
. (7)

For the sake of further discussions, we denote this control system
as Mod(∆; γ ;Ω(t)), whereΩ(t) = (ω0(t), ω1(t), ω2(t)).

In quantum physics, measurement is described by a collection
of measurement operators {Mm}m∈{1,2,...,l}. The index m refers to
measurement outcomes that may occur in the experiment. If the
state prior to themeasurement is ρ, then the probability that result
m occurs is

p(m) = tr(M†
mMmρ) = tr(MmρM†

m), (8)

and the state will collapse to

ρm =
MmρM

†
m

tr(MmρM
†
m)

(9)

after themeasurement.We describe the uncertainties of perturbed
projective measurement by two geometric parameter bounds θϵ
and φϵ . The operators of imperfect projective measurement M̃θϵ ,φϵ

θ

= {P̃+, P̃−} in our dephasing model are

P̃+ = |ψ̃θ ⟩⟨ψ̃θ |, P̃− = |ψ̃⊥

θ ⟩⟨ψ̃⊥

θ |, (10)

where |ψ̃θ ⟩ = cos θ̃2 |0⟩+eiφ̃ sin θ̃
2 |1⟩, |ψ̃⊥

θ ⟩ = sin θ̃
2 |0⟩−eiφ̃ cos θ̃2 |1⟩,

with θ − θϵ ≤ θ̃ ≤ θ + θϵ and −φϵ ≤ φ̃ ≤ φϵ .
It is also assumed that the initial state of Q is knownwith some

uncertainties originating from imperfect measurements. With ge-
ometric parameter bounds θϵ and φϵ , perturbed initial states can
be described by

|ψ̂θ ⟩ = cos
θ̂

2
|0⟩ + eiφ̂ sin

θ̂

2
|1⟩,

θ − θϵ ≤ θ̂ ≤ θ + θϵ,−φϵ ≤ φ̂ ≤ φϵ, (11)

and we define Îθϵ ,φϵθ = {|ψ̂θ ⟩} as the set of possible initial states.
We can present the relaxed robust control problem Rθϵ ,φϵγ ,θ (T0,

ϵP , ϵF ) as follows:
For the systemMod(∆; γ ;Ω(t)) initially at the pure state |ψ̂θ ⟩ ∈

Îθϵ ,φϵθ , when the perturbed projective measurements M̃θϵ ,φϵ
θ =

{P̃+, P̃−} defined in Eq. (10) are available, find a control law so that
the fidelity

F (ρ(t), |ψθ ⟩) ≥ 1 − ϵF , (0 < ϵF < 1) (12)

with the probability

Pr (t) ≥ 1 − ϵP , (0 < ϵP < 1) (13)

during the time interval t ∈ [0, T0].
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