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a b s t r a c t

Detectability of discrete event systems (DESs) is a question whether the current and subsequent states
can be determined based on observations. Shu and Lin designed a polynomial-time algorithm to check
strong (periodic) detectability and an exponential-time (polynomial-space) algorithm to check weak
(periodic) detectability. Zhang showed that checking weak (periodic) detectability is PSpace-complete.
This intractable complexity opens a question whether there are structurally simpler DESs for which the
problem is tractable. In this paper, we show that it is not the case by considering DESs represented as
deterministic finite automata without non-trivial cycles, which are structurally the simplest deadlock-
free DESs. We show that even for such very simple DESs, checking weak (periodic) detectability remains
intractable. On the contrary,we show that strong (periodic) detectability of DESs can be efficiently verified
on a parallel computer.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The detectability problem of discrete event systems (DESs)
is a question whether the current and subsequent states of a
DES can be determined based on observations. The problem was
introduced and studied by Shu and Lin (2011), Shu, Lin, and Ying
(2007). Detectability generalizes other notions studied in the lit-
erature (Caines, Greiner, & Wang, 1988; Ramadge, 1986), such as
stability of Ozveren andWillsky (1990). Shu et al. further argue that
many practical problems can be formulated as the detectability
problem for DESs.

Four variants of detectability have been defined: strong and
weak detectability and strong andweak periodic detectability (Shu
et al., 2007). Shu et al. (2007) investigated detectability for deter-
ministic DESs. A deterministic DES is modeled as a deterministic
finite automaton with a set of initial states rather than a single
initial state. The motivation for more initial states comes from
the observation that it is often not known which state the system
is initially in. They designed exponential algorithms to decide
detectability of DESs based on the computation of the observer.
Later, to be able to handle more problems, they extended their
study to nondeterministic DESs and improved the algorithms for
strong (periodic) detectability of nondeterministic DESs to poly-
nomial time (Shu & Lin, 2011). Concerning the complexity of de-
ciding weak detectability, Zhang (2017) showed that the problem

✩ The material in this paper was not presented at any conference. Research
supported by RVO 67985840. This paper was recommended for publication in
revised form by Associate Editor Joerg Raisch under the direction of Editor Christos
G. Cassandras.

E-mail address:masopust@math.cas.cz.

is PSpace-complete and that PSpace-hardness holds even for de-
terministic DESs with all events observable. Shu and Lin (2013)
further extended strong detectability to delayed DESs and devel-
oped a polynomial-time algorithm to check strong detectability
for delayed DESs. Yin and Lafortune (2017) extended weak and
strong detectability to modular DESs and showed that checking
both strong modular detectability and weak modular detectability
is PSpace-hard. The complexities of these problems have recently
been resolved (Masopust & Yin, 2017).

Zhang’s intractable complexity of deciding weak (periodic)
detectability opens the question whether there are structurally
simpler DESs for which tractability can be achieved. To tackle
this question, we consider structurally the simplest deadlock-free
DESsmodeled as deterministic finite automata without non-trivial
cycles, that is, every cycle is in the form of a self-loop in a state of
the DES. We show that even for these very simple DESs, checking
weak (periodic) detectability remains PSpace-complete, and hence
the problem is intractable for all practical cases.

On the other hand, we show that deciding strong (periodic) de-
tectability of DESs is NL-complete. Since NL is the class of problems
that can be efficiently parallelized (Arora & Barak, 2009), we obtain
that strong (periodic) detectability can be efficiently verified on a
parallel computer.

2. Preliminaries and definitions

For a set A, |A| denotes the cardinality of A and 2A its power set.
An alphabet Σ is a finite nonempty set with elements called events.
Aword overΣ is a sequence of events ofΣ . LetΣ∗ denote the set of
all finite words overΣ; the empty word is denoted by ε. For a word
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u ∈ Σ∗, |u| denotes its length. As usual, the notationΣ+ stands for
Σ∗

\ {ε}.
A nondeterministic finite automaton (NFA) over an alphabet Σ is

a structure A = (Q , Σ, δ, I, F ), where Q is a finite nonempty set of
states, I ⊆ Q is a nonempty set of initial states, F ⊆ Q is a set of
marked states, and δ : Q × Σ → 2Q is a transition function that
can be extended to the domain 2Q

×Σ∗ by induction. The language
recognized by A is the set L(A) = {w ∈ Σ∗

| δ(I, w) ∩ F ̸= ∅}.
Equivalently, the transition function is a relation δ ⊆ Q × Σ × Q ,
where δ(q, a) = {s, t} denotes two transitions (q, a, s) and (q, a, t).

The NFA A is deterministic (DFA) if it has a unique initial state,
i.e., |I| = 1, and no nondeterministic transitions, i.e., |δ(q, a)| ≤ 1
for every q ∈ Q and a ∈ Σ . We say that a DFA A over Σ is total if
its transition function is total, that is, |δ(q, a)| = 1 for every q ∈ Q
and a ∈ Σ . For DFAs, we identify singletons with their elements
and simply write p instead of {p}. Specifically, we write δ(q, a) = p
instead of δ(q, a) = {p}.

A discrete event system (DES) is modeled as an NFA G with all
states marked. Hence we simply write G = (Q , Σ, δ, I) without
specifying the set of marked states. The alphabet Σ is partitioned
into two disjoint subsets Σo and Σuo = Σ \ Σo, where Σo is the
set of observable events and Σuo the set of unobservable events.

The detectability problems are based on the observation of
events, described by the projection P : Σ∗

→ Σ∗
o . The projection

P : Σ∗
→ Σ∗

o is a morphism defined by P(a) = ε for a ∈ Σ \ Σo,
and P(a) = a for a ∈ Σo. The action of P on a word w = σ1σ2 · · · σn
with σi ∈ Σ for 1 ≤ i ≤ n is to erase all events from w that do not
belong to Σo; namely, P(σ1σ2 · · · σn) = P(σ1)P(σ2) · · · P(σn). The
definition can readily be extended to infinite words and languages.

As usual when detectability is studied (Shu & Lin, 2011), we
make the following assumptions on the DES G = (Q , Σ, δ, I):
(1) G is deadlock free, that is, for every state of the system, at least
one event can occur. Formally, for every q ∈ Q , there is σ ∈ Σ such
that δ(q, σ ) ̸= ∅. (2) No loop in G consists solely of unobservable
events: for every q ∈ Q and every w ∈ Σ+

uo, q ̸∈ δ(q, w).
The set of infinite sequences of events generated by the DES

G is denoted by Lω(G). Given Q ′
⊆ Q , the set of all possible

states after observing a word t ∈ Σ∗
o is denoted by R(Q ′, t) =

∪w∈Σ∗,P(w)=tδ(Q ′, w). For w ∈ Lω(G), we denote the set of all its
finite prefixes by Pr(w).

A decision problem is a yes–no question, such as ‘‘Is an NFA A
deterministic?’’ A decision problem is decidable if there exists an
algorithm solving the problem. Complexity theory classifies decid-
able problems to classes based on the time or space an algorithm
needs to solve the problem. The complexity classes we consider
in this paper are NL, P, NP, and PSpace denoting the classes of
problems solvable by a nondeterministic logarithmic-space, deter-
ministic polynomial-time, nondeterministic polynomial-time, and
deterministic polynomial-space algorithm, respectively. The hier-
archy of classes is NL ⊆ P ⊆ NP ⊆ PSpace. Which of the inclusions
are strict is an open problem. The widely accepted conjecture is
that all are strict. A decision problem is NL-complete (resp. NP-
complete, PSpace-complete) if (i) it belongs toNL (resp. NP, PSpace)
and (ii) every problem from NL (resp. NP, PSpace) can be re-
duced to it by a deterministic logarithmic-space (resp. polynomial-
time) algorithm. Condition (i) is called membership and condition
(ii) hardness.

3. The detectability problems

In this section, we recall the definitions of the detectability
problems (Shu & Lin, 2011). Let Σ be an alphabet, Σo ⊆ Σ the
set of observable events, and P the projection from Σ to Σo.

Definition 1 (Strong Detectability). A DES G = (Q , Σ, δ, I) is
strongly detectable with respect to Σuo if we can determine, after
a finite number of observations, the current and subsequent states
of the system for all trajectories of the system, i.e., (∃n ∈ N)(∀s ∈

Lω(G))(∀t ∈ Pr(s))|P(t)| > n ⇒ |R(I, P(t))| = 1.

Definition 2 (Strong Periodic Detectability). A DES G = (Q , Σ, δ, I)
is strongly periodically detectable with respect to Σuo if we can
periodically determine the current state of the system for all tra-
jectories of the system, i.e., (∃n ∈ N)(∀s ∈ Lω(G))(∀t ∈ Pr(s))(∃t ′ ∈

Σ∗)tt ′ ∈ Pr(s) ∧ |P(t ′)| < n ∧ |R(I, P(tt ′))| = 1.

Definition 3 (Weak Detectability). A DES G = (Q , Σ, δ, I) isweakly
detectable with respect to Σuo if we can determine, after a finite
number of observations, the current and subsequent states of the
system for some trajectories of the system, i.e., (∃n ∈ N)(∃s ∈

Lω(G))(∀t ∈ Pr(s))|P(t)| > n ⇒ |R(I, P(t))| = 1.

Definition 4 (Weak Periodic Detectability). A DES G = (Q , Σ, δ, I)
is weakly periodically detectable with respect to Σuo if we can
periodically determine the current state of the system for some
trajectories of the system, i.e., (∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈

Pr(s))(∃t ′ ∈ Σ∗)tt ′ ∈ Pr(s) ∧ |P(t ′)| < n ∧ |R(I, P(tt ′))| = 1.

In what follows, we make often implicit use of the following
lemma whose proof is obvious by definition.

Lemma 5. Let G = (Q , Σ, δ, I) be a DES and P be the projection from
Σ to Σo. Let P(G) = (Q , Σo, δ

′, I) denote the DES obtained from G
by replacing every transition (p, a, q) by (p, P(a), q), and by standard
techniques eliminating ε-transitions. Then G is weak/strong (periodic)
detectable with respect to Σuo if and only if P(G) is weak/strong
(periodic) detectable with respect to ∅. □

4. Complexity of deciding weak detectability

To decide weak (periodic) detectability of a DES, Shu and Lin
(2011) construct the observer and prove that the DES is weakly
detectable if and only if there is a reachable cycle in the observer
consisting of singleton DES state sets, and that the DES is weakly
periodically detectable if and only if there is a reachable cycle
in the observer containing a singleton DES state set. Because of
the construction of the observer, the algorithms are exponential.
However, as pointed out by Zhang (2017), the algorithms require
only polynomial space.

Zhang (2017) further shows that deciding weak (periodic) de-
tectability is PSpace-hard. His construction results in a determin-
istic DES with several initial states. Although the transitions are
deterministic, the DES is not a DFA because of the non-unique
initial state. We slightly improve Zhang’s result.

Theorem 6. Deciding whether a deterministic DES over a binary
alphabet is weakly (periodically) detectable is PSpace-complete.

Proof. Membership in PSpace is known (Zhang, 2017). To show
hardness, we modify Zhang’s construction reducing the finite
automata intersection problem: given a sequence of total DFAs
A1, . . . , An over a common alphabet Σ , the problem asks whether
∩

n
i=1L(Ai) ̸= ∅. Without loss of generality, we may assume that

Σ = {0, 1} (Kozen, 1977).
In every Ai = (Qi, {0, 1}, δi, qi0, Fi), we replace every transition

(p, x, q) by two transitions (p, 0, p′) and (p′, x, q). Intuitively, we
encode 0 as 00 and 1 as 01. Let A′

i = (Qi ∪ Q ′

i , {0, 1}, δ
′

i , q
i
0, Fi)

denote the resulting DFA, where Q ′

i = {p′
| p ∈ Qi}. Notice that

no transition under event 1 is defined in states of Qi of A′

i .
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