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a b s t r a c t

This paper focuses on the global robust output tracking control for a class of uncertain cascaded nonlinear
systems. Using only the measured output, we present a dynamic output feedback λ-tracking control
scheme in a recursive method. Without the assistance of some kind of high-gain observers, we employ a
reduced-order observer to rebuild the unmeasured states. The dynamic adaptation switchingmechanism
plays a key role in achieving the output λ-tracking. It is shown that the designed λ-tracker guarantees
the system output track any desired reference signal with prescribed accuracy, and keep all signals in the
closed-loop system globally bounded. A chaos control application in the fourth-order generalized Lorenz
systems demonstrates the efficacy of the proposed control strategy.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The robust output tracking control of uncertain nonlinear sys-
tems is a central problem in control theory (Byrnes & Isidori, 2000).
The asymptotic tracking aims to design a feedback law, such that
the tracking error between the output of a controlled plant and
a prescribed smooth reference signal converges to zero as time
approaches infinity. The problem of asymptotic tracking has a
long-standing history and has been thoroughly investigated over
the last three decades; see, for instance, Andrieu, Praly, and Astolfi
(2009), Freeman and Kokotović (1996), Krishnamurthy, Khorrami,
and Jiang (2006), Krstić, Kanellakopoulos, and Kokotović (1995),
Li and Yang (2016), Zhang and Lin (2012), etc. From an appli-
cation point of view, the asymptotic tracking objective is either
not achievable or too demanding. In such a case, the practical
tracking is proposed, which is to determine a feedback strategy
guaranteeing the tracking error is ultimately bounded by a param-
eter λ, and hence practical tracking is also known as λ-tracking
(Ilchmann&Ryan, 1994).Mainly because ofweaker conditions and
less information on reference signals, λ-tracking has received a lot
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of attention during the recent years, see the state feedback case like
Ilchmann and Ryan (1994), Lin and Pongvuthithum (2003), Qian
and Lin (2002), Yan and Liu (2010), Ye and Ding (2001), and the
output feedback case BenAbdallah, Khalifa, and Mabrouk (2015),
Bullinger and Allgower (2005), Gong and Qian (2007), Jia, Xu, Ma,
Qi, and Zou (2016), Zhang and Xia (2015), etc.

The robust tracking control via output feedback is a more chal-
lenging problem than state feedback. As shown in Mazenc, Praly,
and Dayawansa (1994) and Teel and Praly (1995), it is even un-
solvable if the nonlinear vector fields grow too fast with respect to
the unmeasurable states. In literatures, the output feedback prac-
tical tracking control has been investigated with some restrictive
growth condition. For example, in Gong and Qian (2007), allowing
some kind of higher-order growth of unmeasurable states, the
practical tracking problem was addressed for a class of nonlinear
systems by dynamic output feedback control. Recently, adaptive
output feedback practical tracking control was addressed in Ben-
Abdallah et al. (2015) with relaxed conditions of unmeasured
states, whereas, the upper bound of the nonlinearities is required
to be a polynomial function of the output. Without any kind of
polynomial bounds, Zhang and Xia (2015) obtained a semi-global
practical tracking control result for a class of stochastic nonlin-
ear systems with dynamic uncertainties and unmeasured states.
Using a high-gain observer involving a high-gain exponent, Jia et
al. (2016) investigated the global practical tracking problem for
nonlinear time-varying delay systems. However, it limits the linear
growth of the unmeasurable states and the time-delay terms.

In this paper,wewill investigate the robust output tracking con-
trol problem via output feedback for a class of uncertain cascaded
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nonlinear systems. Ourmain contributions consist of the following
aspects:
(i) The global robust output tracking control problem is solved for
the uncertain cascaded nonlinear system in the presence of non-
vanishing disturbances. Technically, the gain adaption switching
mechanism is invoked to prevent the parameter drift instability.
It extends the results reported in Jiang, Mareels, Hill, and Huang
(2004) and Wu, Yu, and Zhao (2011).
(ii) Different from the state feedback case in Lin andPongvuthithum
(2003), we skillfully design two parameters Γ ,Υ to scale the
Lyapunov function in closed-loop system. The parameters Γ and
Υ , only serve as a tool for the stability analysis of the closed-loop
system. This featuremakes the designed λ-tracker independent on
the parameters Γ and Υ .
(iii) The proposed control scheme could be applied to the chaos
control for the generalized Lorenz system in the presence of un-
known parameters. It does not invoke the internal model and
thereby could achieve the output tracking control for amuch larger
class of reference signals than the work in Xu and Huang (2010).

Notations: Rn denotes the real n-dimensional space; ∥X∥ denotes
the Euclidean norm of a vector X; |x| denotes its absolute value
when x ∈ R. A continuous function α : [0, a) → [0,∞) is said
to belong to class-K if it is strictly increasing and α(0) = 0. It is
said to belong to class-K∞ if a = ∞ and α(r) → ∞ as r → ∞.
dist

(
x, [−λ, λ]

)
= max{0, |x| − λ} for x ∈ R and λ > 0.

2. Problem statement and preliminary

In this paper, we focus on the following class of uncertain
nonlinear systems described by

η̇ = q(η, y)
ẋi = xi+1 + gi(η, y), i = 1, . . . , n − 1
ẋn = u + gn(η, y)

y = x1 (1)

whereu, y ∈ R are the input and output, and x = (x1, . . . , xn)T ∈ Rn

is part of the stateswith only x1 observablewhile η ∈ Rr represents
cascaded dynamic uncertainty. For existence and uniqueness, it
is further assumed that the uncertain functions q(·) and gi(·) are
locally Lipschitz.

For the controlled system (1), our control task is to solve the
global λ-tracking problem, i.e., given any C1 reference signal yr (t),
to design a dynamic output feedback controller to achieve the
tracking of yr (t) in the sense that limt→∞dist

(
y(t)−yr (t), [−λ, λ]

)
= 0 with prespecified accuracy λ > 0, while keeping all signals in
closed-loop bounded over [0,∞) from any initial conditions.

Next, we introduce the definition of input-to-state practically
stable (ISpS) (Jiang, Mareels, & Wang, 1996).

Definition 1. A control system ẋ = f (x, u) with x ∈ Rn, u ∈ Rm is
ISpS if there exist a smooth, proper, and positive-definite function
V such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥), (2)
∂V
∂x

(x)f (x, u) ≤ −α0(∥x∥) + γ0(∥u∥) + d0, (3)

with α0, α1, α2, γ0 ∈ K∞, and the constant d0 ≥ 0.

Remark 1. If d0 = 0, ISpS degenerates into ISS; moreover, if α0
is only a positive definite, continuous function, it becomes much
weaker integral input-to-state stable (iISS), see Ito (2010) and
Liberzon, Sontag, and Wang (1999).

We make the following Assumptions.
(A1) The cascaded system η̇ = q(η, y) is ISS with an ISS-Lyapunov
function U0(η) satisfying

α(∥η∥) ≤ U0(η) ≤ α(∥η∥),
∂U0

∂η
(η)q(η, y) ≤ −α(∥η∥) + γ (|y|), (4)

where α(·), α(·), α(·), γ (·) ∈ K∞.
(A2) For each 1 ≤ i ≤ n, there exist two unknown positive con-
stants pi1 and pi2, and two known nonnegative smooth functions
φi1(·) and φi2(·), such that

|gi(η, y)| ≤ pi1φi1(∥η∥) + pi2φi2(|y|). (5)

(A3) There exists unknown constantM > 0, such that

|yr (t)| ≤ M, |ẏr (t)| ≤ M, ∀ t ≥ 0. (6)

Remark 2. The investigated system described in Eqs. (1) repre-
sents a large class of single-input-single-output nonlinear systems,
for example, the popular class of output feedback form systems can
be transformed into a special member of uncertain systems (1),
see Ding, Li, and Zheng (2012) and Jiang et al. (2004). Also, many
practical systems such as the continuously stirred tank reactor
(CSTR) (Yu &Wu, 2012), the jet engine compression system (Krstić
et al., 1995), etc., can be written into the form defined in (1).

Remark 3. Assumption (A1) is a generalized version of ISS type
condition in Jia et al. (2016), Lin and Pongvuthithum (2003) and
Zhang and Xia (2015). This assumption of ISS is stronger than the
iISS in Jiang et al. (2004) andWuet al. (2011). Nonetheless, it is nec-
essary in some sense in order to realize the global output tracking
control for the investigated system (1). For example, consider the
following nonlinear system

η̇ = −
1
2
η + ηy2

ẋ1 = u + eη+
√
y

y = x1. (7)

The η-subsystem is iISS but not ISS (see Yu & Wu, 2011). It can
be verified that the output tracking control for system (7) is un-
solvable when yr (t) = 1 because of the weaker iISS cascaded
subsystem.

Remark 4. As a relaxed restriction of Condition (C2) in Jiang
et al. (2004) and Wu et al. (2011), the uncertain nonlinearities
gi(η, y)(i = 1, . . . , n) in Assumption (A2) can be nonvanishing
or biased. For example, this assumption allows the form of eη+

√
y

included in gi(η, y). In addition, it is not required to satisfy any
kind of polynomial bounds. Assumption (A3) only requires that
the reference signal and its derivative have bounds but may be
unknown. As stated in Yan and Liu (2010), this is the weakest
assumption on the reference signal.

Let z1 = y(t) − yr (t), and we have the following Proposition 1,
and its proof is given in Appendix A.

Proposition 1. Choose the smooth nondecreasing positive function
ρ(·), then, the positive definite function

V0(η) =

∫ U0(η)

0
ρ(s)ds (8)

is a C1 input-to-state practically stable (ISpS) Lyapunov function with
input z1 and state η satisfying

V̇0(η) ≤ −
1
2
α(∥η∥)ρ

(
U0(η)

)
+ z21γz1 (z1) + c, (9)
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