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a b s t r a c t

Wepropose a newmethodology for identifyingWiener systemsusing the data acquired from two separate
experiments. In the first experiment, we feed the system with a sinusoid at a prescribed frequency and
use the steady state response of the system to estimate the static nonlinearity. In the second experiment,
the estimated nonlinearity is used to identify a model of the linear block, feeding the system with a
persistently exciting input. We discuss both parametric and nonparametric approaches to estimate the
static nonlinearity. In the parametric case, we show that modeling the static nonlinearity as a polynomial
results into a fast least-squares based estimation procedure. In the nonparametric case, least squares
support vector machines (LS-SVM) are employed to obtain a flexible model. The effectiveness of the
method is demonstrated through numerical experiments.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Block-oriented system identification aims at representing sys-
tems as interconnected linear and nonlinear blocks. The Wiener
system is one of such representations, where a linear time-
invariant (LTI) block representing the dynamics of the process
is followed by a static nonlinear function. Wiener models have
proved to be useful to represent nonlinear systems in many ap-
plication areas, e.g., chemical processes (Kalafatis, Arifin, Wang, &
Cluett, 1995; Zhu, 1999), and biological systems (Hunter & Koren-
berg, 1986). Identification of Wiener systems has been object of
intensive research for many years; an overview of previous works
can be found in Giri and Bai (2010).

Maximum likelihood/prediction error techniques are discussed
in Hagenblad, Ljung, and Wills (2008). The main issue with maxi-
mum likelihood is that estimation of the parameters requires the
solution of a nonlinear optimization problem. A possible approach
to reduce the dimensionality of the problem is to use separable
least squares (Bruls, Chou, Haverkamp, & Verhaegen, 1999), or
build recursive identification schemes (Wigren, 1993). In West-
wick and Verhaegen (1996), a subspace-basedmethod is proposed.
Nonparametricmethods based on aweighted kernel regression are
discussed in several contributions (Greblicki, 1997; Mzyk, 2007),
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where, however, it is required that the input is an i.i.d. sequence.
Semi-parametric techniques relying on a Bayesian nonparametric
model of the static nonlinearity and a parametric model of the LTI
block are proposed in Lindsten, Schön, and Jordan (2013) and Pil-
lonetto (2013). Other approaches based on instrumental variables
and theWiener G-functionals are found in Janczak (2007) and Tiels
and Schoukens (2011), respectively. Experiment design techniques
specifically tailored forWiener system identification are discussed
in Mahata, Schoukens, and De Cock (2016).

In this paper, we discuss a novel method for Wiener sys-
tems that separates the estimation of the nonlinearity from the
identification of the LTI block, facilitating the identification pro-
cess and reducing the computational burden of maximum likeli-
hood/prediction error techniques. To do so, it is required that the
user has the freedom to design the input to the system. Under this
setup, a direct approach to identify the Wiener structure is to de-
sign a Gaussian input and exploit Bussgang’s theorem to separate
the linear and the nonlinear blocks (see e.g. Enqvist & Ljung, 2005).
This strategy however, being based on computing second order
moments, may require collecting long data sets. Furthermore, it is
well known that evennonlinearities lead to systemestimates equal
to zero (Schoukens & Tiels, 2017).

Our approach is based on designing two separate experiments,
each consisting of feeding the system with a specific input. In the
first experiment, the system is driven by a simple sinusoidal signal
with prefixed frequency and phase. Using this signal, we show
that we can easily reconstruct the static nonlinearity as a function
of the unknown phase delay introduced by the LTI block. We
discuss three possible modeling approaches for the nonlinearity.
Depending on the adopted approach, we showhow to fully recover
the nonlinear function (up to a scaling factor), that is, how to
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Fig. 1. Block scheme representation of a Wiener system.

remove the ambiguity introduced by the unknown phase delay.
The first modeling approach relies on a parametric description of
the nonlinearity as a linear combination of a number of basis func-
tions. Here, the phase delay is recovered using a special instance
of separable least squares. The second approach is a special case of
the first, where the basis functions are monomials. In this case, the
function can be fully estimated via a simple procedure involving
least-squares estimation. The third approach is a nonparamet-
ric one; it relies on the least squares support vector machines
(LS-SVM) framework (Suykens, Van Gestel, De Brabanter, DeMoor,
& Vandewalle, 2002), under the assumption that the nonlinearity is
a smooth function. In this case, the phase delay is estimated along
with the hyperparameters characterizing the kernel used in the
LS-SVM estimation procedure.

We note that the idea of feeding a Wiener system with a sine
signal was also explored in previous work. In Bai (2003), the phase
delay introduced by the LTI block is estimated by comparing the
frequency content of the output and the input. In Giri, Rochdi, and
Chaoui (2009), the phase delay is estimated using a geometric ap-
proach. In this paper we use different approaches to phase estima-
tion, depending on the model adopted for the static nonlinearity.

Using the estimated model of the static nonlinearity, we per-
form a second experiment where the system is fed with a persis-
tently exciting input. In this way, we can identify the LTI block
by means of a modified version of the standard prediction error
method (PEM) for linear output-error (OE) systems (Ljung, 1999).
The computational burden of this second step reduces essentially
to the one of PEM for OE systems.

2. Wiener system identification using a two-experiment ap-
proach

We consider the following SISO system, also called a Wiener
system (see Fig. 1 for a schematic representation):

xt = G(q−1)ut

yt = f (xt ) + et . (1)

In the former equation, G(q−1) represents the transfer function of a
causal, asymptotically stable, LTI subsystem, driven by the input
ut , where q−1 denotes the time shift operator, namely q−1ut =

ut−1. In the latter equation, yt is the result of a static nonlinear
transformation, denoted by f (·), of the signal xt , and et is white
noise with (finite) unknown variance σ 2 and finite higher-order
moments. Furthermore, we assume that the noise is independent
of the input and that f ∈ C0, the set of continuous and pointwise
defined functions. The problem under study is to estimate the
LTI subsystem and the nonlinear function from a set of input and
output measurements.

We assume that the user has the freedom to design the input
signal ut . In particular, we assume that the user has the possibility
to run two separate experiments, each having a particular signal ut
as an input. The goal of this paper is to describe an identification
technique for the system (1) that is linked to a particular choice of
these experiments. It consists of the two following steps:

(1) Feed the system with a sinusoid at a prescribed frequency
and use the steady-state data to estimate the nonlinear
function f (·);

(2) Feed the systemwith a persistently exciting input signal and
identify the LTI subsystem using the information gathered
on the first step regarding the static nonlinearity.

Let us first briefly discuss the second step of the proposed
procedure. Let the LTI subsystem be described through the param-
eterized transfer function

G(q−1, θ ) =
b0 + b1q−1

+ · · · + bmq−m

1 + a1q−1 + · · · + anq−n , (2)

so that its dynamics are completely characterized by the parameter
vector θ := [b0 b1 . . . bm a1 . . . an]. Then, assuming
that an estimate of the nonlinearity say, f̂ (·), is available after the
first step of the procedure, we can set up a PEM-based identifica-
tion criterion as follows

θ̂ = argmin
θ

1
N2

N2∑
t=1

(
yt − f̂ (G(q−1, θ )ut )

)2
, (3)

where N2 is the number of samples collected during the second
experiment. Note that this is a mild generalization of the standard
PEM, requiring only to account, in the optimization process, for the
nonlinear transformation induced by f̂ (·). This does not make the
solution of (3) harder than a standard PEM applied to an output-
error model, because in both cases we have to face a nonlinear and
non-convex optimization problem. Solution of PEM-type problems
for OE systems has been object of intensive research for decades,
and the field is now at a mature stage, with several developed
methodologies that ensure achieving the global minimum of (3)
(see, e.g., Eckhard, Bazanella, Rojas, & Hjalmarsson, 2017 for pre-
filtering techniques for OE identification, or Lacy, Erwin, and Bern-
stein (2001) and Wigren (1994) for Wiener system identification
when the nonlinearity is known).

As opposed to the aforementioned second step, the first step
can be more involved and requires a more thorough analysis. We
shall focus on this step in the remainder of the paper.

3. Approaches to estimate the nonlinearity

In this sectionwediscuss the first step of the procedure, propos-
ing three estimation approaches for the static nonlinearity.

We consider the input signal ut = sin(ωt + φ0), where ω is a
user-prescribed frequency and φ0 is a known phase delay.Without
loss of generality, in the remainder of the paper we shall consider
φ0 = 0. Then, after the transient effect of G(q−1) has vanished, we
have that xt = Aω sin(ωt + φω), where Aω and φω are the gain
and the phase delay of the LTI subsystem G(q−1) at the frequency
ω (Ljung, 1999, Ch. 2). Due to the structural non-identifiability
of Wiener systems, Aω cannot be determined (see Remark 2). We
thus drop it and define a new signal x̄t := sin(ωt + φω), which is
parameterized by the unknown quantity φω . Accordingly, wewrite
the output of the system as

yt = f (sin(ωt + φω)) + et . (4)

Then, the problem under study, that is to estimate f (·), is coupled
with the problem of estimating φω . In the following, we describe
three approaches to this problem, assuming that the number of
collected samples of yt (at its steady state) is equal to N1.

Remark 1. Since we are estimating the static nonlinearity us-
ing the signal x̄t instead of xt , we are obtaining a scaled (in the
x-axis) version of f (·), that is, we are estimating f (x/Aω) instead
of f (x). This scaling effect is compensated in the second phase of
the method; in fact (3) will return the estimate AωG(q−1) instead
of G(q−1). Then, we need additional information (e.g., on the LTI
system gain, see Bai, 1998) to uniquely recoverG(q−1) and f (·); this
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