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a b s t r a c t

Synthesis of interval state estimators is investigated for the systems described by a class of parabolic
Partial Differential Equations (PDEs). First, a finite-element approximation of a PDE is constructed and the
design of an interval observer for the derived ordinary differential equation is given. Second, the interval
inclusion of the state function of the PDE is calculated using the error estimates of the finite-element
approximation. Finally, the obtained interval estimates are used to design a dynamic output stabilizing
control. The results are illustrated by numerical experiments with an academic example and the Black–
Scholes model of financial market.
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1. Introduction

Model complexity is a key issue for development of control
and observation algorithms. Sound, heat, electrostatics, electro-
dynamics, fluid flow, elasticity, or quantum mechanics, as well
as the models of other physical phenomena, can be formalized
similarly in terms of PDEs, whose distributed nature introduces
an additional level of intricacy. That is why control and estimation
of PDEs is a very popular direction of research nowadays (Barje,
Achhab, & Wertz, 2013; Bredies, Clason, Kunisch, & von Winckel,
2013; Demetriou, 2004; Hasan, Aamo, & Krstic, 2016; Kamran &
Drakunov, 2015; Krstic, 2009; Meurer, 2013; Nguyen, 2008; Rus-
sell, 2003; Smyshlyaev&Krstic, 2005, 2010). In this class ofmodels,
where the system state is a function of the space at each instant
of time, the problem of its explicit measurement is natural, since
only pointwise and discrete space measurements are realizable by
a sensor (Jrgensen, Goldschmidt, & Clement, 1984; VandeWouwer,
Point, Porteman, & Remy, 2000). Frequently, in order to design
a state estimator, the finite-dimensional approximation approach
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is used (Alvarez & Stephanopoulos, 1982; Dochain, 2000; Hagen
& Mezic, 2003; Vande Wouver & Zeitz, 2002), then the observa-
tion problem is addressed with the well-known tools available
for finite-dimensional systems, while the convergence assessment
has to be performed with respect to the solutions of the original
distributed system.

After complexity, another difficulty for synthesis of an esti-
mator or controller consists in the model uncertainty (unknown
parameters or/and external disturbances). Presence of uncertainty
implies that the design of a conventional estimator, converging to
the ideal value of the state, is difficult to achieve. In this case a
set-membership or interval estimation becomes more attainable:
an observer can be constructed such that using the input–output
information it evaluates the set of admissible values (interval) for
the state at each instant of time. The interval width is proportional
to the size of the model uncertainty (it has to be minimized by
tuning the observer parameters). There are several approaches
to design the interval/set-membership estimators (Jaulin, 2002;
Kieffer&Walter, 2004;Olivier&Gouzé, 2004). Thiswork is devoted
to the interval observers (Efimov, Fridman, Raïssi, Zolghadri, &
Seydou, 2012; Moisan, Bernard, & Gouzé, 2009; Olivier & Gouzé,
2004; Raïssi, Efimov, & Zolghadri, 2012; Raïssi, Videau, & Zolghadri,
2010), which form a subclass of set-membership estimators and
whose design is based on the monotone systems theory (Farina &
Rinaldi, 2000; Kaczorek, 2002; Smith, 1995). The idea of the inter-
val observer design has been proposed rather recently in Gouzé,
Rapaport, and Hadj-Sadok (2000), but it has already received nu-
merous extensions for various classes of dynamical models. In the
present paper an extension of this approach for the estimation of
systems described by PDEs is discussed.
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An interval observer for systems described by PDEs using the
finite-dimensional approximation approach has been proposed
in Kharkovskaya, Efimov, Polyakov, and Richard (2016), in the
present work the proofs of those results are given, with the ad-
ditional design of an output stabilizing control and an application
to a model of financial market. Using the discretization error esti-
mates from Wheeler (1973), the enveloping interval for solutions
of the PDE is evaluated. An interesting feature of the proposed
approach is that being applied to a nonlinear PDE, assuming that all
nonlinearities are bounded and treated as perturbations, then the
proposed interval observer is linear and can be easily implemented
providing bounds on solutions of the originally nonlinear PDE
(under the hypothesis that these solutions exist). The proposed
control strategy disposes a similar advantage, since it is designed
for a finite-dimensional model, but guaranteeing boundedness of
trajectories for an uncertain distributed dynamics.

The outline of this paper is as follows. After preliminaries in
Section 2, and an introduction of the distributed system properties
in Section 3, the interval observer design is given in Section 4. The
design of an output control algorithm based on interval estimates
is considered in Section 5. The results of numerical experiments are
presented in Section 6.

2. Preliminaries

The real numbers are denoted by R, R+ = {τ ∈ R : τ ≥ 0}.
Euclidean norm for a vector x ∈ Rn will be denoted as |x|. The
symbols In, En×m and Ep denote the identity matrix with dimension
n× n, the matrix with all elements equal 1 with dimensions n×m
and p × 1, respectively.

For two vectors x1, x2 ∈ Rn or matrices A1, A2 ∈ Rn×n, the
relations x1 ≤ x2 and A1 ≤ A2 are understood elementwise. The
relation P ≺ 0 (P ≻0) means that the matrix P = PT

∈ Rn×n is
negative (positive) definite. Given a matrix A ∈ Rm×n, define A+

=

max{0, A}, A−
= A+

− A (similarly for vectors) and |A| = A+
+ A−.

Lemma 1 (Efimov et al., 2012). Let x ∈ Rn be a vector variable,
x ≤ x ≤ x for some x, x ∈ Rn. If A ∈ Rm×n is a constant matrix,
then

A+x − A−x ≤ Ax ≤ A+x − A−x. (1)

2.1. Nonnegative continuous-time linear systems

A matrix A ∈ Rn×n is called Hurwitz if all its eigenvalues
have negative real parts, and it is called Metzler if all its elements
outside the main diagonal are nonnegative. Any solution of the
linear system

ẋ = Ax + Bω(t), ω : R+ → Rq
+, (2)

y = Cx + Dω(t),

with x ∈ Rn, y ∈ Rp and a Metzler matrix A ∈ Rn×n, is
elementwise nonnegative for all t ≥ 0 provided that x(0) ≥ 0
and B ∈ Rn×q

+ (Farina & Rinaldi, 2000; Kaczorek, 2002; Smith,
1995). The output solution y(t) is nonnegative if C ∈ Rp×n

+ and D ∈

Rp×q
+ . Such a dynamical system is called cooperative (monotone) or

nonnegative if only initial conditions in Rn
+
are considered (Farina

& Rinaldi, 2000; Kaczorek, 2002; Smith, 1995).
For a Metzler matrix A ∈ Rn×n its stability can be checked

verifying a Linear Programming (LP) problem ATλ < 0 for some
λ ∈ Rn

+
\ {0}, or the Lyapunov matrix equation ATP + PA ≺ 0 for

a diagonal matrix P ∈ Rn×n, P > 0 (in the general case the matrix
P should not be diagonal). The L1 and L∞ gains for nonnegative
systems (2) have been studied in Briat (2011) and Ebihara, Peau-
celle, and Arzelier (2011), for this kind of systems these gains are
interrelated. The conventional results and definitions on the L2/L∞

stability for linear systems can be found in Khalil (2002).

3. Distributed systems

In this section basic facts on finite-dimensional approximations
of a PDE and some auxiliary results are given.

3.1. Preliminaries

If X is a normed space with norm ∥ · ∥X , Ω ⊂ Rn is an open set
for some n ≥ 1 and φ : Ω → X , define

∥φ∥
2
L2(Ω,X) =

∫
Ω

∥φ(s)∥2
X ds, ∥φ∥L∞(Ω,X) = ess sup

s∈Ω

∥φ(s)∥X .

By L∞(Ω, X) and L2(Ω, X) denote the set of functions Ω → X
with the properties ∥ · ∥L∞(Ω,X) < +∞ and ∥ · ∥L2(Ω,X) < +∞,
respectively. Denote I = [0, 1], let Ck(I,R) be the set of functions
having continuous derivatives through the order k ≥ 0on I . For any
q > 0 and an open interval I ′ ⊂ I define W q,∞(I ′,R) as a subset of
functions y ∈ Cq−1(I ′,R) with an absolutely continuous y(q−1) and
with y(q) essentially bounded on I ′, ∥y∥Wq,∞ =

∑q
i=0∥y

(i)
∥L∞(I ′,R).

Denote by Hq(I,R) with q ≥ 0 the Sobolev space of functions with
derivatives through order q in L2(I,R), and for q < 0 the corre-
sponding dual spaces, while by Hq

0 (I,R) a closure of C∞ functions
having compact support in I with respect to the norm in Hq(I,R).

For two functions z1, z2 : I → R their relation z1 ≤ z2 has to
be understood as z1(x) ≤ z2(x) for all x ∈ I , the inner product is
defined in a standard way:

⟨z1, z2⟩ =

∫ 1

0
z1(x)z2(x)dx z1, z2 ∈ L2(I,R).

3.2. Approximation

Following Wheeler (1973), consider the following PDE with
homogeneous Dirichlet boundary conditions:

ρ(x)
∂z(x, t)

∂t
= L[x, z(x, t)] + r(x, t) ∀(x, t) ∈ I × (0, T ),

z(x, 0) = z0(x) ∀x ∈ I, (3)
0 = z(0, t) = z(1, t) ∀t ∈ (0, T ),

where I = [0, 1] and T > 0,

L(x, z) =
∂

∂x

(
a(x)

∂z
∂x

)
− b(x)

∂z
∂x

− q(x)z,

r ∈ L∞(I × [0, T ],R), a, b, q, ρ ∈ L∞(I,R) and there exist
a0, a1, ρ0, ρ1 ∈ R+ such that

0 < a0 ≤ a(x) ≤ a1, 0 < ρ0 ≤ ρ(x) ≤ ρ1 ∀x ∈ I,

and a′, b′
∈ L2(I,R), where a′

= ∂a(x)/∂x.
Let ∆ = {xj}N

′

j=0 for some N ′ > 0, where 0 = x0 < x1 < · · · <

xN ′ = 1, and Ij = (xj−1, xj), hj = xj − xj−1, h = max1≤j≤N ′hj. Let
Ps(I ′) be the set of polynomials of the degree less than s + 1, s > 0
on an interval I ′ ⊆ I , then adopt the notation:

Ms,∆
= {v ∈ C0(I,R) : v(x) = vj(x) ∀x ∈ Ij,

vj ∈ Ps(Ij) ∀1 ≤ j ≤ N ′
}

and M = Ms,∆
0 = {v ∈ Ms,∆

: v(0) = v(1) = 0}.
Introduce a bilinear form:

L(y, v) = −
⟨
ay′, v′

⟩
−
⟨
by′, v

⟩
− ⟨qy, v⟩ y, v ∈ H1(I,R),

and define

λ ≥
1
2a0

(ess sup
x∈I

b2(x) − ess inf
x∈I

q(x)).



Download English Version:

https://daneshyari.com/en/article/7108661

Download Persian Version:

https://daneshyari.com/article/7108661

Daneshyari.com

https://daneshyari.com/en/article/7108661
https://daneshyari.com/article/7108661
https://daneshyari.com

