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a b s t r a c t

A distributed model predictive control strategy is proposed for subsystems sharing a limited resource.
Self-organized Time Division Multiple Access is used to coordinate subsystem controllers in a sequence
such that no two re-optimize simultaneously. This new approach requires no central coordination or
pre-organized optimizing sequence. The scheme guarantees satisfaction of coupled constraints despite
dynamic entry and exit of subsystems.
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1. Introduction

Controlling large-scale systems such as transport networks or
power distribution grids in a centralized way is often hard due
to the computational scaling and coordination requirements. Cen-
tralized control is also prone to single point of failure, motivating
interest in distributed control systems. Model Predictive Control
(MPC) is a control technique combining constrained optimization
with feedback control (Grüne&Pannek, 2011;Maciejowski, 2002),
and schemes for Distributed MPC (DMPC) have been discussed
by Christofides, Scattolini, de la Peña, and Liu (2013), Negenborn
and Maestre (2014), Scattolini (2009) and many more. This pa-
per focusses on DMPC for subsystems sharing a limited resource,
which couples the systems through constraints (Bourdais, Buisson,
Dumur, Guéguen, & Moroşan, 2014; Keviczky, Borrelli, & Balas,
2006; Kuwata, Richards, Schouwenaars, & How, 2007a; Li, Shi, &
Yan, 2016; Lucia, Kögel, & Findeisen, 2015; Müller, Reble, & All-
göwer, 2012; Tedesco, Raimondo, &Casavola, 2014). Other forms of
coupling, not considered here, are through the dynamics (Alessio,
Barcelli, & Bemporad, 2011; Dunbar, 2007; Farina & Scattolini,
2012; Hernandez & Trodden, 2016) or through the system-wide
objective function (Borrelli & Keviczky, 2006; Dunbar & Murray,
2006; Wang & Ong, 2010).
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This paper adopts a serial DMPC scheme in which only one
subsystem controller may optimize its plan at a time. With the
plans for other subsystems therefore fixed, and known via commu-
nication, system-wide feasibility is this ensured. Previous work on
serial schemes has proven its properties, subject to the assumption
of an agreed updating sequence for the subsystems (Dai, Xia, Gao,
Kouvaritakis, & Cannon, 2015; Keviczky, Borrelli, & Balas, 2004a,
2004b; Kuwata et al., 2007a; Richards & How, 2007; Trodden &
Richards, 2013). However, the determination of that sequence is
a centralized process. The simple contribution of this paper is the
incorporation of a distributed slot allocation process, inspired by
multiple access channel (MAC) sharing methods from communi-
cations systems (Rom & Sidi, 2012). In particular, Self-organizing
Time Division Multiple Access (STDMA) (Gaugel, Mittag, Harten-
stein, Papanastasiou, & Strom, 2013) is adopted, but instead of
allocating transmission slots for communication, here it allocates
optimization slots for re-planning.

The goal of distributed sequencing (slot allocation) is the same
in spirit with the goal of ‘‘Plug & Play (PnP) Control’’ which in-
tends to handle the distributed control problem for systems with
a changing numbers of subsystems. In PnP control by adding or
removing a subsystem, just local controller of the subsystem un-
der control and subsystems influenced by it (neighbours) need to
be redesigned (Stoustrup, 2009). PnP control methods proposed
by Riverso, Farina, and Ferrari-Trecate (2014) and Zeilinger,
Pu, Riverso, Ferrari-Trecate, and Jones (2013) tackle the problem
of automatically accommodating the constant changes in system
model due to adding or removing one or multiple subsystems
during closed-loop operation. In both of these works, subsystems
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are physically coupled whereas in this paper subsystems are cou-
pled through their constraints. Barreiro-Gomez, Obando, Ocampo-
Martinez, and Quijano (2015) and Lucia et al. (2015) addressed the
challenge of performing network changes because of joining and
leaving subsystems with coupled constraints. The decentralized
MPC schemepresented by Barreiro-Gomez et al. (2015) can handle
only one single coupled constraint on control signals. The contract-
based DMPC introduced by Lucia et al. (2015) guarantees the
constraint satisfaction in parallel optimization via transmission of
sequences of possible future trajectories. The proposed method in
this paper considers the particular coupling constraints associated
with sharing of limited resources. Also in contrast to Lucia et
al. (2015), our subsystems communicate exact trajectories but
with serial (one-at-a-time) optimization and they implement a
decentralized approach to sequencing.

2. Self-organized sequencing

Consider a dynamic set of subsystems P(k) containing n(k) =
|P(k)| members at each time step k. A subset of these subsys-
tems PC (k) ⊆ P(k) is in the cooperation mode, using serial DMPC
to coordinate their actions such that shared resource limits are
respected. Let nC (k) = |PC (k)| denote the number of cooperating
subsystems. The remainder P(k) \PC (k) remain in a restricted safe
mode, not consuming any of the shared resources, and hence not
required to communicate. Serial DMPC requires a unique allocation
of subsystems to time steps, such that every step is associated
to at most one subsystem, pk ∈ PC (k) ∪ {0}. At every step, the
allocated subsystem pk (if there is one, pk ̸= 0) solves its local
optimal control problem and shares the resulting intentions with
the others. This section describes how the allocation is achieved in
a dynamic, self-organized way, enabling subsystems to move from
safe mode to cooperation mode. Since this problem is analogous
to slot allocation in communications, the algorithm is based on
STDMA, which is a decentralized MAC method.

Define Lf ≥ 1 to be the frame length, i.e. the repeating period
for slot allocation, such that pk = pk+Lf provided pk remains
in cooperation. Then Algorithm 1 presents the procedure of self-
organized sequencing for an agent q ∈ P(k)\PC (k)wishing to enter
cooperation mode. Since the allocation is periodic, entry involves
simply listening for one frame and then choosing an available
slot in the next frame. The possible problem is a ‘‘collision’’ in
which two subsystems attempt to enter at the same step, each
unaware of the presence of the other. This event is detected by
both subsystems and a random back-off time is employed to avoid
deadlock.

Leaving the cooperation is achieved by stopping transmission,
indicating to others that the slot is again available. Thus, unlike the
communications case where slot allocations have finite lifetime,
a slot belongs to a subsystem indefinitely until that subsystem
relinquishes it. The control constraints associated with entry and
leaving are described in Section 4.

Assumption 1 (Frame Length). The frame length Lf is known to all
subsystem controllers. This forms part of the common interface for
subsystems: it is central to the scalability concept that the interface
is standard and known to all agents.

Remark 1. It is not necessary for all subsystem controllers to
define a common phasing of the frames, since the frames are
periodic (Rom & Sidi, 2012).

Remark 2. Since no more than Lf subsystems can have slots,
then the frame length Lf represents a limit on the number of
subsystems in cooperation mode: nC (k) ≤ Lf . The choice of Lf
therefore represents an important design choice, as increasing Lf

Algorithm 1 Entry into Cooperation Mode
Require: Subsystem ID q, initial time k1
1: Listen for Lf steps to determine {pk1 , . . . , pk1+Lf }
2: Identify offsets of free slots:Jfree = {j ∈ [0, . . . , Lf ] | pk1+j = 0}
3: if no free slot, Jfree = ∅ then
4: Try again: go to Step 1
5: else
6: Choose free slot at random, ĵ ∈ Jfree

7: Wait for slot ĵ in next frame, k = k1 + Lf + ĵ
8: Transmit current plan Y ∗p (k1 + Lf + ĵ)
9: if no other subsystem transmitted then

10: Secured pk1+ĵ+nLf = q ∀n = 1, 2, . . . as long as q ∈ PC (k)
11: return Success
12: else
13: Collision: wait for random number of steps
14: Try again: go to Step 1
15: end if
16: end if

meansmore capacity for entering agents but a longerwait to enter,
according to Algorithm1. A full study of this trade-off is beyond the
scope of this brief paper and the reader is directed to Asadi and
Richards (2015) for more consideration.

3. Control problem definition

Each subsystem p ∈ P(k) has its own dynamics,

xp(k+ 1) = fp(xp(k),up(k)) k ∈ N, ∀p ∈ P (1)

where xp ∈ RNx,p and up ∈ RNu,p are the state vector and control
input vector of subsystem p, respectively.

Remark 3. The dynamics (1) are not subject to any uncertainty.
Ideas such as the tube approach (Trodden & Richards, 2010) could
be applied to handle disturbances, but these are omitted here for
simplicity.

Each subsystem p is subject to local constraints on state and
input

xp(k) ∈ Xp (2)

up(k) ∈ Up (3)

and has its own local objective function, in fixed horizonMPC form

Jp =
N−1∑
t=0

lp(xp(k+ t|k),up(k+ t|k), k)+ Vp(xp(k+ N|k), k) (4)

where N is the number of time steps in the prediction horizon,
lp : RNx,p × RNu,p

× R → R0+ represents a stage cost, Vp is a
terminal cost and the double subscript notation (k+ t|k) indicates
the prediction of a variable t steps ahead from time k. The focus of
this paper is constraint satisfaction, and hence the nature of the
cost function will not be specified in more detail. However, the
reader should note that the time variation permits different costs
to be used in different modes, and this will be exploited later.

Define a set of shared resources L and let yℓ
p ∈ R be the amount

of particular resource ℓ ∈ L used by subsystem p:

yℓ
p(k) = gℓ

p (xp(k),up(k)). (5)

All subsystems share the limited resources L and hence their
outputs are coupled by

n∑
p=1

yℓ
p(k) ≤ 1, ∀ℓ ∈ L. (6)



Download English Version:

https://daneshyari.com/en/article/7108691

Download Persian Version:

https://daneshyari.com/article/7108691

Daneshyari.com

https://daneshyari.com/en/article/7108691
https://daneshyari.com/article/7108691
https://daneshyari.com

