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a b s t r a c t

This work proposes an approach to speed up finite-time consensus algorithm using the weights of a
weighted Laplacian matrix. It is motivated by the need to reach consensus among states of a multi-agent
system in a distributed control/optimization setting. The approach is an iterative procedure that finds a
low-order minimal polynomial that is consistent with the topology of the underlying graph. In general,
the lowest-order minimal polynomial achievable for a network system is an open research problem. This
work proposes a numerical approach that searches for the lowest order minimal polynomial via a rank
minimization problem using a two-step approach: the first being an optimization problem involving the
nuclear norm and the second a correction step. Convergence of the algorithm is shown and effectiveness
of the approach is demonstrated via several examples.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Achieving consensus of states is a well-known important
feature for networked system, see for example Olfati-Saber and
Murray (2004) and Ren and Beard (2007). Many distributed con-
trol/optimization problems over a network require a consensus
algorithm as a key component. The most common consensus al-
gorithm is the dynamical system defined by the Laplacian matrix
for continuous time systemand the Perronmatrix for discrete-time
system. Past works in the general direction of speeding up conver-
gence of these algorithms exist. For example, the work of Xiao and
Boyd (2004) proposes a semi-definite programming approach to
minimize the algebraic connectivity over the family of symmetric
matrices that are consistent with the topology of the network.
Their approach, however, results in asymptotic convergence to-
wards the consensus value and is most suitable for large networks.
More recent works focus on finite-time convergence consensus al-
gorithm (Hendrickx, Jungers, Olshevsky, & Vankeerberghen, 2014;
Hendrickx, Shi, & Johansson, 2015; Sundaram & Hadjicostis, 2007;
Wang & Xiao, 2010; Yuan, Stan, Shi, Barahona, & Goncalves, 2013;
Yuan, Stan, Shi, & Goncalves, 2009) which is generally preferred
for small to moderate sized networks. One important area in
finite-time convergence literature is the determination of the
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asymptotic value of a consensus network using a finite number of
state measurement. Typically, the approach adopted is based
on the z-transform final-value theorem and on the finite-time
convergence for individual node (Sundaram & Hadjicostis, 2007;
Yuan et al., 2013, 2009) without knowledge of the full network.
Other works in finite-time consensus include the design of a
short sequence of stochastic matrices Ak, . . . , A0 such that z(k) =

Π k
j=1Ajz(0) reaches consensus after k steps (Hendrickx et al., 2015;

Ko & Shi, 2009).
Unlike past works (Sundaram & Hadjicostis, 2007; Yuan et al.,

2013, 2009) where the network is unknown, this work assumed a
known network and proposes an approach to speed up finite-time
convergence of consensus algorithm via the choices of the weights
associated with the edges of the graph. Thus, it is similar in spirit
to the work of Xiao and Boyd (2004) except that the intention is
to find a low-order minimal polynomial. Ideally, the lowest-order
minimal polynomial should be used. However, the lowest minimal
polynomial achievable for a given graph with variable weights is
an open research problem (Fallat & Hogben, 2007). They are only
known for some special classes of graphs (full connected, star-
shaped, strongly regular and others), van Dam andHaemers (1998)
and vanDam, Koolen, and Tanaka (2014). For this reason, this paper
adopts a computational approach towards finding a low-order
minimal polynomial. The proposed approach achieves the lowest
order minimal polynomial in many of the special classes of graphs
and almost always yields minimal polynomial of order lower than
those obtained from standard Perron matrices of general graphs.
These are demonstrated by several numerical examples.

The choice of the weights is obtained via a rank minimization
problem. In general, rank minimization is a well-known difficult

https://doi.org/10.1016/j.automatica.2018.03.067
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.03.067
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.03.067&domain=pdf
mailto:wang.zheming@u.nus.edu
mailto:mpeongcj@nus.edu.sg
https://doi.org/10.1016/j.automatica.2018.03.067


416 Z. Wang, C.J. Ong / Automatica 93 (2018) 415–421

problem (Fazel, Hindi, & Boyd, 2004; Recht, Fazel, & Parrilo, 2010).
Various approaches have been proposed in the literature including
the nuclear norm relaxation, bilinear projection and others. This
work uses a unique two-step procedure: the first is a nuclear norm
optimization problem and the second, which uses the results of
the first, is a correction step based on a low rank approximation.
While both steps of this two-step procedure have appeared in the
literature, the use of the two in a two-step predictor–corrector
procedure is novel, to the best of the authors’ knowledge. Hence,
the proposed rank minimization approach can be of independent
interest, as well as the expression of finite-time convergence value
obtained via a non z-transform mechanization.

The remainder of this paper is organized as follows. This section
ends with a description of the notations used. Section 2 reviews
features of the standard Laplacian and Perron matrices as well
as minimal polynomial and its properties. Section 3 presents the
procedure of obtaining the consensus value from the minimal
polynomial and discusses, in detail, the key subalgorithm used in
the overall algorithm including a convergence result. The overall
algorithm is described in Section 4 and the performance of the
approach is illustrated via several numerical examples in Section 5.
Conclusions are given in Section 6.

The notations used in this paper are standard. Non-negative
and positive integer sets are indicated by Z+

0 and Z+, respectively;
whereas, R,Rn,Rn×m refer, respectively, to the sets of real num-
bers, n-dimensional real vectors and n by m real matrices. In is the
n×n identity matrix with 1n being the n-column vector of all ones
(subscript omitted when the dimension is clear). Given a set C ,
|C | denotes its cardinality. The transpose of matrix M and vector
v are indicated by M ′ and v′, respectively. For a square matrix Q ,
Q ≻ (⪰)0 means Q is positive definite (semi-definite), spec(Q )
refers to the set of its eigenvalues, and vec(Q ) is the representation
of elements ofQ as a vector. The cones of symmetric positive semi-
definite and symmetric and positive definite matrices are Sn

0+ =

{M ∈ Rn×n
|M = M ′,M ⪰ 0} and Sn

+
= {M ∈ Rn×n

|M =

M ′,M ≻ 0}, respectively. The ℓp-norm of x ∈ Rn is ∥x∥p for
p = 1, 2, ∞ while ∥M∥∗, ∥M∥2, ∥M∥F are the nuclear, operator
(induced) and Frobenius norm of matrix M . Diagonal matrix is
denoted as diag{d1, . . . , dn} with diagonal elements di. Additional
notations are introduced when required.

2. Preliminaries and problem formulation

This section begins with a review of standard consensus algo-
rithm and sets up the notations needed for the sequel. The network
of n nodes is described by an undirected graph G = (V, E) with
vertex set V = {1, 2, . . . , n} and edge set E ⊆ V × V . The pair
(i, j) ∈ E if i is a neighbor of j and vice versa since G is undirected.
The set of neighbors of node i is Ni := {j ∈ V : (i, j) ∈ E, i ̸= j}. The
standard adjacency matrix As of G is the n × n matrix whose (i, j)
entry is 1 if (i, j) ∈ E , and 0 otherwise.

The implementation of the proposed consensus algorithm is a
discrete-time system of the form z(k + 1) = Pz(k) where P is
the Perron matrix. However, for computational expediency, the
working algorithm uses the weighted Laplacian matrix L ∈ Sn

0+.
The conversion ofL toP is standard and is discussed later, together
with desirable properties of P and L. The properties of standard
(non-weighted) L are first reviewed.

The standard Laplacian matrix Ls of a given G is

[Ls]i,j =

{
−1, if j ∈ Ni;
|Ni|, if i = j ;
0, otherwise.

(1)

In this form, it is easy to verify that (i) eigenvalues of Ls are
real and non-negative, (ii) eigenvectors corresponding to different
eigenvalues are orthogonal, (iii) Ls has at least one eigenvalue 0

with eigenvector 1n. Properties (i) and (ii) follow from the fact that
Ls is symmetric and positive semi-definite while property (iii) is a
result of the row sum of all rows being 0. Suppose the assumption
(A1): G is connected is made. Then, it is easy to show that the
eigenvalue of 0 is simple with eigenvector 1n. Consequently, the
consensus algorithm of ẋ(t) = −Lsx(t) converges to 1

n1n(1′
nx(0)).

Unlike (1), this work uses the weighted Laplacian

L(W ,G) = D(G) − A(G,W ) (2)

where A(G,W ) is the weighted adjacency matrix with [A(G,W )]ij
= wij when (i, j) ∈ E , D(G) = diag{d1, d2, . . . , dn} with di :=∑

j∈Ni
wij and W := {wij ∈ R|(i, j) ∈ E}. The intention of this work

is to compute algorithmically the minimal polynomial of L(W ,G)
over variable W for a given G. However, since the minimal poly-
nomial attainable for a given network G is a well-known difficult
problem (Fallat & Hogben, 2007), the output of the algorithm can
be seen as an upper bound on the order of the achievable minimal
polynomials of L(W ,G) over all W . Note that the value of wij is
arbitrary including the possibility that wij = 0 and wij < 0 for
(i, j) ∈ E . This relaxation allows for a larger W search space but
brings about the possibility of losing connectedness of L(W ,G)
even when G is connected. Additional conditions are therefore
needed to preserve connectedness, as discussed in the sequel. Since
G is fixed, its dependency in L(·),D(·) and A(·) is dropped for
notational convenience unless required.

The desirable properties of L(W ) are as follows:

(L1) All eigenvalues are non-negative.
(L2) 0 is a simple eigenvalue with eigenvector 1n.
(L3) [L(W )]ij = 0 when (i, j) ̸∈ E .
(L4) L(W ) has a low-order minimal polynomial.

Properties (L1) and (L2) are needed for x(t) of the continuous time
system ẋ(t) = −Lx(t) to reach consensus while (L3) is a hard
constraint imposed by the structure of G. Property (L4) determines
the finite-time convergence towards consensus and is the objective
of this work. With these properties, the corresponding Perron
matrix is obtained from P := e−ϵL or P := In − ϵL(W ), with
0 < ϵ < 1

maxi{di}
). Then, it is easy to verify that P inherits from

(L1)–(L4) the following properties:

(P1) All eigenvalues of P lie within the interval (−1, 1].
(P2) 1 is a simple eigenvalue of P with eigenvector 1n.
(P3) [P]ij = 0 when (i, j) ̸∈ E .
(P4) P has a low-order minimal polynomial.

The discrete-time consensus algorithm via P follows

z(k + 1) = Pz(k) (3)

for discrete variable z ∈ Z+

0 . From (P1), (P2) and (A1), it is easy to
show, with (σi, ξi) being the ith eigenpair of P , that limk→∞z(k) =

limk→∞(
∑n

i=1ξiξ
′

i σ
k
i )z(0) =

1
n1n. Hence, limk→∞z(k) reaches con-

sensus among all its elements. The above shows that finding a
P that possesses properties (P1)–(P4) is equivalent to finding an
L(W ) having properties (L1)–(L4). The remaining paragraphs of
this section review definitions and properties of the minimal and
characteristic polynomials.

Definition 1. Theminimal polynomialmM (t) of a square matrixM
is the monic polynomial of the lowest order such thatmM (M) = 0.

Several well known properties of characteristic and minimal
polynomial (see for example, Friedberg, Insel, and Spence (2003)
or others) are collected in the next lemma.
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