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a b s t r a c t

This paper introduces a framework for quantitative characterization of the sensitivity of time-varying
linear systems (or networks) in terms of input orientation. The motivation for such an approach comes
from the study of biophysical sensory networks in the brain, wherein responsiveness to both energy and
salience (in terms of input orientation and novelty) is presumably critical for mediating behavior and
function. Here, we use an inner product to define the angular separation of the current input with respect
to past inputs. Then, by constraining input energy, we define an optimal control problem to obtain the
minimally novel input –the one that has the smallest relative angle –that effects a given state transfer.
We provide analytical conditions for existence and uniqueness for the solution in both continuous and
discrete-time. A closed-form expression for the minimally novel input is derived and from this solution,
a fundamental relationship between control energy and input orientation sensitivity is highlighted. We
provide an example that demonstrates the utility of the developed sensitivity analysis.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the sensitivity of dynamical systems to their
afferent inputs is a fundamental problem in control theory. Clas-
sically, sensitivity analysis is performed in the frequency domain
and characterizes, in essence, the response of a system to harmonic
inputs of fixed energy. In this paper, we are interested in under-
standing the sensitivity of systems not in terms of frequency or
energy, but rather in terms of the geometry, i.e., the orientation,
of inputs in Euclidean space.

More concretely, we aremotivated by a need formore complete
sensitivity characterizations of biological and neuronal systems.
As an example, consider a simple, prototypical ‘feedforward-type’
layeredmodel of a sensory networks, wherein sensory neurons are
tuned/oriented to a high dimensional feature space (e.g., different
sounds, tastes, or colors) (Dayan & Abbott, 2001). One may put
forth a supposition that the sensitivity of such a network, with
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respect to its afferent inputs, is critical for facilitating perception
and behavior (see Fig. 1).

However, in the study of the sensitivity of such a system, energy
is but one salient property of the inputs. Also important is the input
orientation, i.e., the alignment of an input with certain features,
and novelty, the difference in orientation of an input from past
inputs (Pimentel, Clifton, Clifton, & Tarassenko, 2014). Indeed, the
novelty of an input stimulus may be just as, if not more, important
for perception than its energy (Downar, Crawley, Mikulis, & Davis,
2002). By means of analogy, a hot room feels hotter when entering
it from the cold. The ability to assess the responsiveness of sys-
tems to novelty – at a particular moment in time, relative to past
inputs – has immediate implications in the analysis and control
of physiological neuronal network dynamics in several different
regimes (Ching, Brown,&Kramer, 2012; Ching&Ritt, 2013; Lepage,
Ching, & Kramer, 2013). Said somewhat more mathematically,
suppose that an input to a system (network) is denoted u(t) ∈ Rm.
Then, whereas a conventional sensitivity analysis may focus on
change in output per change in ∥u(t)∥, we are concerned with the
problem of change in output per change in ∢u(t).

Specifically, in this paper, we seek a quantification of the sen-
sitivity of linear time-varying systems in terms of input orienta-
tion/novelty (Kumar et al., 2015). In particular, we ask how respon-
sive are the state trajectories to inputs that differ in orientation
from those that have previously been applied. Fig. 2 illustrates this
basic notion for a two-dimensional linear system with a three-
dimensional input. A particular input drives the system from a
point in the state space at t = −2 to an intermediate point at
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Fig. 1. In a sensory network, the input layer is tuned/oriented (i.e., sensitive) to
features of the afferent input (stimulus), such as color. The sensitivitywill determine
the ultimate percept, or behavior. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Minimum novelty control vs. minimum energy control: (A) The trajectory
(blue) brings the system from an initial state at t = −2 on intermediate state
at t = 0. Subsequently, two trajectories are contrasted in the phase-plane for
the minimum novelty control, which is the subject of this paper (red, B); and the
minimum energy control (black, C). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

t = 0; from this point emerge two trajectories, both of which
reach a common endpoint at t = 2. The inputs that induce these
trajectories are qualitatively different. The first one is not ‘novel’,
noting the similarity between the input over t ∈ [−2, 0] and that
over t ∈ [0, 2]). In contrast, the second input is relatively more
novel and, as well, uses less energy.

The major development in this paper centers on the following
question: how novel must an input be, relative to a preceding input,
in order to induce a prescribed state transfer? It turns out that an
answer to this question can be obtained in closed form, through
evaluation of a non-convex optimization problem. Formulation
and solution of this problem forms the principal control-theoretic
axis of this paper. More specifically, our major contributions are

(1) We define the notion of input novelty as the orientation
between two inputs.

(2) We analytically derive, for both continuous and discrete,
linear time-varying systems, the minimum novelty control
that effects a desired state transfer. The problem seeks the
smallest orientation associated with a given state transfer,
relative to a prior input and constrained by a fixed average
input energy.

(3) From the analytical results, we highlight a fundamental re-
lationship between energy and input orientation sensitivity
in linear systems.

(4) We present an example that highlights the utility of the
proposed sensitivity analysis in the context of a decision
model.

The remainder of the paper is organized as follows. In Section 2,
we introduce the inner product-based input novelty measure for

Fig. 3. A schematic of applied inputs to the system over the time interval [−T , T ].
v(t−T ) is the prior input which acts on the system from t = −T to t = 0. The input
u(t) acts on the system from t = 0 to t = T .

continuous-time, linear time-varying systems and formulate a
non-convex optimal control problem that minimizes this novelty
under the constraint of a fixed average input energy. We establish
the existence and the uniqueness of a global optimal solution of
the control problem and derive a closed-form expression for the
minimally novel input. In Section 3, we derive analogous results
for discrete time linear time-varying systems. Finally, in Section 4,
we demonstrate utility of the developed approach.

2. Continuous-time, linear dynamical systems

2.1. Input novelty

We consider a linear, time-varying systemwith dynamics of the
form
dx(t)
dt

= A(t)x(t) + B(t)u(t). (1)

Here x(t) ∈ Rn×1 represents the state of the system at time t ,
A(t) ∈ Rn×n describes the time-varying dynamics, B(t) ∈ Rn×m

is the input matrix, and u(t) ∈ Rm×1 is the input to the system.We
assume that the dynamical system (1) is controllable.

We consider an input v(t − T ) ∈ Rm×1, t ∈ [0, T ], with total
energy Tγv , i.e.

1
T

∫ T

0
∥v(t − T )∥2

2dt = γv (2)

where ∥v(t − T )∥2 is the Euclidean norm of the vector v(t − T ).
Further, we assume that v(t − T ) is a prior input to the system that
brings the state to x0 at t = 0. Thus, v(t − T ) acts on the system
from t = −T to t = 0 whereas u(t) acts from t = 0 to t = T , as
shown in Fig. 3. Here, T > 0 is a constant and γv > 0 is the average
per-time energy of v(t). We denote the state of the system at t = 0
as x(0) ≡ x0, at t = −T as x(−T ) ≡ xr and at t = T as x(T ) ≡ xf .
Throughout the paper, we denote (·)′ and ∥ · ∥2 as the transpose
and Euclidean norm of the underlying argument.

Definition 1 (Input Orientation). The dot product of v(t − T ) and
u(t) is given by

v′(t − T )u(t) = ∥v(t − T )∥2∥u(t)∥2cos(θ (t)). (3)

Here, ∥v(t−T )∥2 and ∥u(t)∥2 are the Euclidean normof inputs v(t−
T ) and u(t) respectively. We define θ (t) as the input orientation.

Definition 2 (Input Novelty). We define a cost function J(T ) asso-
ciated with inputs v(t − T ) and u(t) as

J(T ) =
1

T
√

γvγu

∫ T

0
v′(t − T )u(t)dt, (4)

where

1
T

∫ T

0
∥u(t)∥2

2dt = γu, (5)



Download English Version:

https://daneshyari.com/en/article/7108724

Download Persian Version:

https://daneshyari.com/article/7108724

Daneshyari.com

https://daneshyari.com/en/article/7108724
https://daneshyari.com/article/7108724
https://daneshyari.com

