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a b s t r a c t

This paper is concerned with the envelope-constrained H∞ filtering problem for a class of discrete
nonlinear stochastic systems subject to quantization effects over a finite horizon. The systemunder inves-
tigation involves both deterministic and stochastic nonlinearities. The stochastic nonlinearity described
by statistical means is quite general that includes several well-studied nonlinearities as its special cases.
The output measurements are quantized by a logarithmic quantizer. Two performance indices, namely,
the finite-horizon H∞ specification and the envelope constraint criterion, are proposed to quantify the
transient dynamics of the filtering errors over the specified time interval. The aimof the proposed problem
is to construct a filter such that both the prespecified H∞ requirement and the envelope constraint are
guaranteed simultaneously over a finite horizon. By resorting to the recursivematrix inequality approach,
sufficient conditions are established for the existence of the desired filters. A numerical example is finally
proposed to demonstrate the effectiveness of the developed filtering scheme.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the significance in control and signal processing, the
nonlinear filtering problem has been attracting constant research
interest in the past several decades. A number of approaches have
been developed to deal with the filtering problem for nonlinear
stochastic systems, among which some of the most widely used
include but are not limited to Bayes filtering, particle filtering,
extended Kalman filtering (EKF) and unscented Kalman filtering
(UKF). The Bayes filter aims to, in a recursive fashion, estimate
the hidden state by using the available measurements and the
process model (Garcia, Hausotte, & Amthor, 2013). Based on the
Bayesian theory in combinationwith the concept of sequential im-
portance sampling, particle filtering is particularly useful in coping
with nonlinear and/or non-Gaussian problems (Djuric et al., 2003).
However, the high computational complexity largely hinders the
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utilization of particle filters. Another recursive filter that should be
mentioned is the celebrated Kalman filter (Kalman, 1960), which
is in fact a linear version of Bayes filter for systems subject to Gaus-
sian noises. As for nonlinear stochastic Gaussian systems, several
invariants based on Kalman filters have been developed among
which the most widely applied are EKF and UKF. EKF provides an
approximation of an optimal estimate by linearizing the nonlinear
system at the state estimates, which has found wide applications
in both theoretical research and engineering practice (Einicke &
White, 1999). However, it is no longer applicable when the pro-
cess/measurement models are highly nonlinear, which gives rise
to the so-called unscented Kalman filtering. The UKF uses a deter-
ministic sampling technique known as the unscented transform to
pick a minimal set of sample points around the mean value and
could give more accurate estimates than EKF especially for those
highly nonlinear systems (Sarkka, 2007).

The past several decades have seen a surge of research interest
on the H∞ filtering problems for nonlinear systems and several
effective approaches have been exploited to deal with filtering
problems with the requested disturbance attenuation level, see
e.g. Dong, Wang, Ding, and Gao (2016), Einicke and White (1999),
Shaked and Berman (1995), Shen and Deng (1997), Shen, Wang,
Shu, andWei (2010) and Takaba and Katayama (1996). On another
research frontier, networked control systems (NCSs) have attracted
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much attention owing to their clear application insights in a wide
range of areas (Zhang, Han, & Jia, 2015; Zhang, Han, & Zhang, 2017).
It has been recognized that, in the context of NCSs, the quantization
effects stemming from analog-to-digital conversion processes are
ubiquitous, which would probably lead to the deterioration of
the system performance. In the NCS research, there are mainly
two types of quantization models, namely, the uniform quantiza-
tion (Tsai & Song, 2009) and the logarithmic quantization (Fu&Xie,
2005). In particular, a sector-bound technique has been presented
in Fu and Xie (2005) that is capable of coping with the logarithmic
quantization issues conveniently, and such an elegant paradigm
has then been quickly followed in the area, see e.g. Liu, Liu, and
Alsaadi (2016) and Shen et al. (2010).

The envelope-constrained filtering (ECF) algorithm has been
stirring some research interest in the past few decades. The main
idea of ECF algorithm is to confine the output of the filtering error
(stimulated by a specified input) into a prescribed envelope. Such
an envelope is determined by the desired output and tolerance
band. The ECF technique has found successful applications in a
variety of engineering branches ranging from signal processing to
digital communications (Cantoni, Vo, & Teo, 2001; Ding, Wang,
Shen, & Dong, 2015). Up to now, several methodologies have been
utilized in the literature to deal with the envelope-constrained
filtering problems, see, e.g. Tan, Soh, and Xie (2000) and Zang,
Cantoni, and Teo (1999). It should be pointed out that almost all the
results relevant to ECF have been concerned with the linear time-
invariant systems.When it comes to general nonlinear time-varying
systems, the corresponding envelope-constrained filtering prob-
lem has not been thoroughly investigated yet and this motivates
us to shorten such a gap in the current study. It is, therefore, the
main purpose of this paper to deal with the identified challenges
by launching a major study on the so-called envelope-constrained
H∞ filtering problem.

The rest of this paper is organized as follows. Section 2 formu-
lates the envelope-constrained H∞ filtering problem for discrete-
time nonlinear system subject to quantization effects. The main
results are presented in Section 3 where sufficient conditions for
solvability of the addressed filtering problem are given in terms
of recursive linear matrix inequalities (RLMIs). Section 4 gives a
numerical example and Section 5 outlines our conclusion.

2. Problem formulation

Consider the following nonlinear systemdefined on the horizon
[0,N]:⎧⎨⎩

xk+1 = f (xk) + g(xk) + Bkwk

yk = h(xk) + Dkvk

zk = Lkxk

(1)

where xk ∈ Rnx , yk ∈ Rny and zk ∈ Rnz represent, respectively,
the system state, the measurement output and the signal to be
estimated. wk ∈ l2([0,N];Rnw ) and vk ∈ l2([0,N];Rnv ) are the
disturbance inputs. Bk, Dk and Lk are known time-varying matrices
with appropriate dimensions.

The deterministic nonlinearities f (xk) and h(xk) are known and
analytic everywhere over the finite horizon [0,N]. On the other
hand, the stochastic nonlinearity g(xk) is assumed to have the
following first moment for all xk:

E{g(xk)|xk} = 0 (2)

with the covariance given by

E{g(xk)gT(xj)|xk} = 0, k ̸= j

E{g(xk)gT(xk)|xk} =

q∑
l=1

ϱl,kϱ
T
l,k

(
xTkΥl,kxk

) (3)

where ϱl,k and Υl,k ≥ 0 (l = 1, 2, . . . , q) are, respectively, known
column vectors and matrices with compatible dimensions.

In this paper, the quantization effects are taken into considera-
tion. Denote the quantizer as

σ (·) ≜
[
σ1(·) σ2(·) · · · σny (·)

]
which is symmetric, i.e., σj(−y) = −σj(y) (j = 1, 2, . . . , ny). The
quantizer is assumed to be logarithmic type and the process of the
quantization is described by

σ (yk) =

[
σ1(y

(1)
k ) σ2(y

(2)
k ) · · · σny (y

(ny)
k )

]T
(4)

where y(j)k (j = 1, 2, . . . , ny) denotes the jth entry of the vector yk.
For each σ (·), the set of quantization levels is described by

Uj =
{
±µ̂

(j)
i , µ̂

(j)
i = χ i

j µ̂
(j)
0 , i = 0,±1,±2, . . .

}
∪

{
0
}
,

0 < χj < 1, µ̂(j)
0 > 0. (5)

where χj (j = 1, 2, . . . , ny) is the quantization density. Each of the
quantization level corresponds to a segment such that the quan-
tizermaps thewhole segment to this quantization level. According
to Fu and Xie (2005), the associated quantizer is defined as follows:

σ (y(j)k ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ̂

(j)
i ,

1 + χj

2
µ̂

(j)
i ≤ y(j)k ≤

1 + χj

2χj
µ̂

(j)
i

0, y(j)k = 0

− σ (−y(j)k ), y(j)k < 0.

(6)

Consequently, it can be easily seen from the above definition (6)
that the following inequality holds:(
σ (yk) − G1yk

)T(
σ (yk) − G2yk

)
≤ 0 (7)

where G1 ≜ diagny{2χj/(1+χj)} and G2 ≜ diagny{2/(1+χj)}. Since
0 < χj < 1, it is obvious that 0 ≤ G1 < I ≤ G2. Then, σ (yk) can be
decomposed as follows:

σ (yk) = G1yk + ϕ(yk) (8)

where ϕ(yk) is a nonlinear vector-valued function which, from (7),
satisfies

ϕT(yk)
(
ϕ(yk) − Gyk

)
≤ 0 (9)

with G being defined as G ≜ G2 − G1.

Definition 1 ( Durieu, Walter, & Polyak, 2001). A bounded ellipsoid
E (c, P, n) ofRn with a nonempty interior in themean square sense
can be defined by

E (c, P, n) ≜ {x ∈ Rn
: E{(x − c)TP−1(x − c)} ≤ 1}

where c ∈ Rn is the center of E (c, P, n) and P > 0 is a positive
definite matrix.

In this paper, the filter to be designed is of the following form:

x̂k+1 = Fkx̂k + Hkσ (yk), x̂0 = 0. (10)

Denote ek ≜ xk − x̂k and z̃k ≜ zk − ẑk. Subtracting (10) from (1)
and taking (8) into account, we obtain the following filtering error
system:⎧⎪⎨⎪⎩

ek+1 = f (xk) + g(xk) + Bkwk − Fkx̂k
− HkG1h(xk) − Hkϕ

(
yk

)
− HkG1Dkvk

z̃k = Lkek.
(11)

By defining

Φk ≜
∂ f (x)
∂x

⏐⏐⏐
x=x̂k

, Ψk ≜
∂h(x)
∂x

⏐⏐⏐
x=x̂k

,
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