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a b s t r a c t

We present a new formulation of a convergence result for Lyapunov function candidates satisfying
a differential inequality with integrable coefficients that often appears in adaptive control problems.
Usually, Barbalat’s Lemma is invoked, requiring boundedness of the time derivative of the Lyapunov
function candidate which can sometimes be hard to establish. By connecting results from the literature,
an alternative route avoiding Barbalat’s Lemma is suggested.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the adaptive control problem of regulating the scalar
state x of the system

ẋ = ax + u (1)

to zero, where a is an unknown constant and u is the control input.
Following a standard identifier-based approach to design u, we
select the identifier

˙̂x = −γ0(x̂ − x) + âx + u + k0(x − x̂)x2 (2)

where γ0 and k0 are positive design gains. The error e = x − x̂
satisfies

ė = −γ0e + ãx − k0ex2 (3)

where the parameter estimation error ã = a− â has been defined.
Consider the Lyapunov function candidate V1, defined as

V1 =
1
2
e2 +

1
2γ1

ã2 (4)

for some design scalar γ1 > 0. Differentiating (4) with respect to
time and inserting the dynamics (3), we obtain

V̇1 = −γ0e2 − k0e2x2 (5)
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where we have chosen the adaptive law

˙̂a = γ1ex. (6)

From (5) it is clear that V1 is non-increasing, and therefore

e, ã ∈ L∞ (bounded). (7)

Since V1 is non-increasing and bounded from below, V1 has a limit
as t → ∞, and so (5) can be integrated from t = 0 to infinity to
obtain

e, ex ∈ L2 (square-integrable). (8)

Now, choosing the control law

u = −âx − γ2x̂ (9)

for a design gain γ2 > 0, and substituting into (2), we get

˙̂x = −γ2x̂ + γ0e + k0ex2. (10)

Consider the Lyapunov function candidate

V2 =
1
2
x̂2 +

1
2
e2. (11)

Differentiating (11) with respect to time and inserting the dynam-
ics (3) and (10), and using Young’s inequality, yield

V̇2 = −γ2x̂2 + x̂γ0e + k0x̂ex2 − γ0e2 + eãx − k0e2x2

≤ −γ2x̂2 +
ρ1γ0x̂2

2
+
γ0e2

2ρ1
+

k0ρ2x̂2e2x2

2
+

k0x̂2

ρ2

+
k0e2

ρ2
− γ0e2 +

ρ3e2

2
+

ã2x̂2

ρ3
+

ã2e2

ρ3
− k0e2x2 (12)
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for arbitrary positive constantsρ1, ρ2, ρ3. Choosingρ1 =
γ2
3γ0
, ρ2 =

6
γ2k0

, ρ3 =
6a20
γ2
, where a0 upper bounds |â|, and recalling that

e, ex ∈ L2, we obtain

V̇2 ≤ −cV2 + l1V2 + l2 (13)

where c = min{γ2, 2γ0} is a positive constant and

l1 =
6
γ2

e2x2 (14a)

l2 =

(
3
2
γ 2
0

γ2
+
γ2k20
6

+
3a20
γ2

+
γ2

6

)
e2 (14b)

are integrable functions (i.e. l1, l2 ∈ L1).
At this point it is customary to set the stage for applying Bar-

balat’s Lemma by invoking the following result:

Lemma 1 (Lemma B.6 from Krstić, Kanellakopoulos, & Kokotović,
1995). Let v(t), l1(t), l2(t), be real-valued functions defined for t ≥ 0.
Suppose,1

v(t), l1(t), l2(t) ≥ 0, ∀t ≥ 0 (15a)
l1, l2 ∈ L1 (15b)
v̇(t) ≤ −cv(t) + l1(t)v(t) + l2(t) (15c)

where c is a positive constant. Then

v ∈ L1 ∩ L∞. (16)

To apply Barbalat’s Lemma (Lemma 4 or Corollary 5 in the
Appendix) for concluding V2 → 0, one must in addition to (16),
establish that V̇2 ∈ L∞, which happens to be the case in this exam-
ple. Another option is to use Lemma 3.1 from Liu and Krstić (2001)
(Lemma 6 in the Appendix), which requires V̇2 to be bounded from
above and not necessarily from below.

It turns out, however, that the conditions of Lemma 1 are
sufficient to obtain convergence without requiring any form of
boundedness on V̇2, a fact that follows trivially from combining
Lemma 1 and the following Lemma.

Lemma2 (Lemma2.17 fromTao, 2003). Consider a signal g satisfying

ġ(t) = −ag(t) + bh(t) (17)

for a signal h ∈ L1 and some constants a > 0, b > 0. Then

g ∈ L∞ (18)

and

lim
t→∞

g(t) = 0. (19)

2. Extension of Lemma 1

We will here state the main point of this note, which is an
extension of Lemma 1.

Lemma 3. Let v(t), l1(t), l2(t), be real-valued functions defined for
t ≥ 0. Suppose

v(t), l1(t), l2(t) ≥ 0, ∀t ≥ 0 (20a)
l1, l2 ∈ L1 (20b)
v̇(t) ≤ −cv(t) + l1(t)v(t) + l2(t) (20c)

where c is a positive constant. Then

v ∈ L1 ∩ L∞ (21)

1 In Krstić et al. (1995) v(0) ≥ 0 is assumed rather than v(t) ≥ 0.

and

lim
t→∞

v(t) = 0. (22)

Proof. Property (21) follows from Lemma 1. Writing (20c) as

v̇(t) ≤ −cv(t) + f (t) (23)

where

f (t) = l1(t)v(t) + l2(t) (24)

satisfies f ∈ L1 and f (t) ≥ 0, ∀t ≥ 0 since l1, l2 ∈ L1, l1(t), l2(t) ≥

0, ∀t ≥ 0 and v ∈ L∞. Lemma 2 can be invoked for (23) with
equality. The result (22) then follows from the comparison lemma.

An alternative, direct proof of (22) goes as follows. For (22) to
hold, we must show that for every ϵ1 > 0, there exists T1 > 0 such
that

v(t) < ϵ1 (25)

for all t > T1. We will prove that such a T1 exists by constructing
it. Since f ∈ L1, there exists T0 > 0 such that∫

∞

T0

f (s)ds < ϵ0 (26)

for any ϵ0 > 0. Solving

ẇ(t) = −cw(t) + f (t), (27)

and applying the comparison principle, gives the following bound
for v(t)

v(t) ≤ v(0)e−ct
+

∫ t

0
e−c(t−τ )f (τ )dτ . (28)

Splitting the integral at τ = T0 gives

v(t) ≤ v(0)e−ct
+ e−c(t−T0)

∫ T0

0
e−c(T0−τ )f (τ )dτ

+

∫ t

T0

e−c(t−τ )f (τ )dτ

≤ Me−ct
+

∫ t

T0

f (τ )dτ (29)

for t > T0, where

M = v(0) + ecT0
∫ T0

0
f (τ )dτ

≤ v(0) + ecT0∥f ∥1 (30)

is a finite, positive constant. Using (26) with

ϵ0 =
1
2
ϵ1, (31)

we have

v(t) ≤ Me−ct
+

∫ t

T0

f (τ )dτ < Me−ct
+ ϵ0

< Me−ct
+

1
2
ϵ1. (32)

Now, choosing T1 as

T1 = max
{
T0,

1
c
log

(
2M
ϵ1

)}
(33)

we obtain

v(t) <
1
2
ϵ1 +

1
2
ϵ1 = ϵ1 (34)

for all t > T1, which proves (22).
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