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a b s t r a c t

The traditional secondary frequency control of power systems restores nominal frequency by steering
Area Control Errors (ACEs) to zero. Existing methods are a form of integral control with the characteristic
that large control gain coefficients introduce an overshoot and small ones result in a slow convergence to
a steady state. In order to deal with the large frequency deviation problem, which is the main concern of
the power system integrated with a large number of renewable energy, a faster convergence is critical. In
this paper, we propose a secondary frequency control method named Power-Imbalance Allocation Control
(PIAC) to restore the nominal frequency with a minimized control cost, in which a coordinator estimates
the power imbalance and dispatches the control inputs to the controllers after solving an economic power
dispatch problem. The power imbalance estimation converges exponentially in PIAC, both overshoots and
large frequency deviations are avoided. In addition, when PIAC is implemented in a multi-area controlled
network, the controllers of an area are independent of the disturbance of the neighbor areas, which allows
an asynchronous control in the multi-area network. A Lyapunov stability analysis shows that PIAC is
locally asymptotically stable and simulation results illustrate that it effectively eliminates the drawback
of the traditional integral control based methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Rapid expansion of the contribution of distributed renewable
energy sources has accelerated research efforts in controlling the
power grid. In general, frequency control is implemented at three
different levels distinguished from fast to slow timescales (Ilić &
Zaborszky, 2000; Schavemaker & van der Sluis, 2008). In a short
time scale, the power grid is stabilized by decentralized droop
control, which is called primary control. While successfully balanc-
ing the power supply and demand, and synchronizing the power
frequency, the primary control induces frequency deviations from
the nominal frequency, e.g., 50 or 60 Hz. The secondary frequency
control regulates the frequency back to its nominal frequency in a
slower time scale than the primary control. On top of the primary
and secondary control, the tertiary control is concernedwith global
economic power dispatch over the networks in a large time scale.
Consequently it depends on the energy prices and markets.
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The secondary frequency control is the focus of this paper.
An interconnected electric power system can be described as a
collection of subsystems, each of which is called a control area.
The secondary control in a single area is regulated by Automatic
Generation Control (AGC), which is driven by Area Control Error
(ACE). The ACE of an area is calculated from the local frequency
deviations within the area and power transfers between the area
and its neighbor areas. The AGC controls the power injections to
force the ACE to zero, thus restores the nominal frequency. Due
to the availability of a communication network, other secondary
frequency control approaches have recently been developedwhich
minimize the control cost on-line (Dörfler, Simpson-Porco, & Bullo,
2016), e.g., the Distributed Average Integral Method (DAI) (Zhao,
Mallada, & Dörfler, 2015), the Gather-and-Broadcast (GB) method
(Dörfler & Grammatico, 2017), economic AGC (EAGC) method (Li,
Zhao, & Chen, 2016), and distributed real time power optimal
power control method (Liu, Qu, Xin, & Gan, 2017). These meth-
ods suffer from a common drawback, namely that they exhibit
overshoot for large gain coefficients and slow convergence for
small gain coefficients (Berger & Schweppe, 1989; Elgerd & Fosha,
1970; Ibraheem, Kumar, & Kothari, 2005). This is due to the fact
that they rely on integral control which is well-known to give
rise to the two phenomena mentioned above. Note that the slow
convergence speed results in a large frequency deviation which is
themain concern of power systems integratedwith a large amount
of renewable energy.
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The presence of fluctuations is expected to increase in the near
future, due to weather dependent renewable energy, such as solar
and wind energy. These renewable power sources often cause
serious frequency fluctuations and deviation from the nominal fre-
quency due to the uncertainty of the weather. This demonstrates
the necessity of good secondary frequency control methods whose
transient performance is enhanced with respect to the traditional
methods. We have recently derived such a method called Power
Imbalance Allocation Method (PIAC) in Xi, Dubbeldam, Lin, and
van Schuppen (2017b), which can eliminate the drawback of the
integral control based approach. This paper is the extended version
of the conference paper (Xi et al., 2017b) with additional stability
analysis and the extension of PIAC to multi-area control.

We consider power systems with lossless transmission lines,
which comprise traditional synchronous machines, frequency de-
pendent devices (e.g., power inverters of renewable energy or
frequency dependent loads) and passive loads. We assume the
system to be equipped with the primary controllers and propose
the PIAC method in the framework of Proportional–Integral (PI)
control, which first estimates the power imbalance of the sys-
tem via the measured frequency deviations of the nodes of the
synchronous machines and frequency dependent power sources,
next dispatches the control inputs of the distributed controllers
after solving the economic power dispatch problem. Since the
estimated power imbalance converges exponentially at a rate that
can be accelerated by increasing the control gain coefficient, the
overshoot problem and the large frequency deviation problem are
avoided. Hence the drawback of the traditional ACE method is
eliminated. Furthermore, the control gain coefficient is indepen-
dent of the parameters of the power system but only relies on the
response time of the control devices. Consequently the transient
performance is greatly enhanced by improving the performance
of the control devices in PIAC. When implemented in a multi-
area power network, PIAC makes the control actions of the areas
independent, while the controllers of each area handle the power
imbalance of the local area only.

The paper is organized as follows. We introduce the mathe-
matical model of the power system in Section 2. We formulate
the problem and discuss the existing approaches in Section 3,
then propose the secondary frequency control approach, Power-
Imbalance Allocation Control (PIAC), based on estimated power
imbalance in Section 4 and analyze its the stability invoking the
Lyapunov/LaSalle stability criterion in Section 5. Finally, we eval-
uate the performance of PIAC by simulations on the IEEE-39 New
England test power system in Section 6. Section 7 concludes with
remarks.

2. The model

A power system is described by a graph G = (V, E) with nodes
V and edges E ⊆ V × V , where a node represents a bus and edge
(i, j) represents the direct transmission line connection between
nodes i and j. We consider a power system as a lossless electric
network with constant voltage (e.g., transmission grids where the
line resistances are neglected) and an adjacency matrix (B̂ij) where
B̂ij denotes the susceptance between node i and node j. The system
consists of three types of nodes, synchronous machines, frequency
dependent devices and passive loads, the sets ofwhich are denoted
by VM , VF and VP respectively. Thus V = VM ∪ VP ∪ VF . The fre-
quency dependent devices are for example frequency dependent
loads, inverters of renewable energy, buses equipped with droop
controllers. Denote the number of the nodes in V,VM ,VF ,VP by
n, nM , nF , andnP respectively, hencen = nM+nF+nP . Themodel is
described by the following Differential Algebraic Equations (DAEs),

see e.g., Dörfler, and Grammatico (2017),

θ̇i = ωi, i ∈ VM ∪ VF , (1a)

Miω̇i + Diωi = Pi −
∑
j∈V

Bij sin(θi − θj) + ui, i ∈ VM , (1b)

Diωi = Pi −
∑
j∈V

Bij sin(θi − θj) + ui, i ∈ VF , (1c)

0 = Pi −
∑
j∈V

Bij sin(θi − θj), i ∈ VP , (1d)

where θi is the phase angle at node i, ωi is the frequency deviation
from the nominal frequency, i.e., ωi = ωi − f ∗ where ωi is the
frequency and f ∗

= 50 Hz or 60 Hz is the nominal frequency,
Mi > 0 denotes the moment of inertia of a synchronous machine,
Di > 0 is the droop control coefficient, Pi is the power injection
or demand, Bij = B̂ijViVj is the effective susceptance of line (i, j),
Vi is the voltage at node i, ui ∈ [ui, ui] is a secondary frequency
control input. Note that ui is a constrained input of the secondary
frequency control, ui and ui are its lower and upper bounds, respec-
tively. Furthermore, the set of nodes equipped with the secondary
controllers is denoted by VK ⊆ VM ∪VF and ui = 0 for i ̸∈ VK . Here,
we have assumed that the nodes that participate in secondary
control are equipped with primary controllers. Note that the loads
can also be equipped with primary controllers (Zhao, Topcu, Li,
& Low, 2014). The dynamics of the voltage and reactive power is
not modeled, since they are irrelevant for control of the frequency.
More details on decoupling the voltage and frequency control in
the power system can be found in Kundur (1994), Simpson-Porco,
Dörfler, and Bullo (2016), and Trip, Bürger, and De Persis (2016).
The model with linearized sine functions in (1) is also widely
studied to design primary and secondary frequency control laws,
e.g., Andreasson, Dimarogonas, Sandberg, and Johansson (2014), Li
et al. (2016) and Zhao, Mallada, Low, and Bialek (2016). For the
validity of the linearized model with lossless network, we refer
to Ilić and Zaborszky (2000), and Van Hertem (2006).

3. Secondary frequency control of power systems

3.1. Problem formulation

In practice, the frequency deviation should be in a prescribed
range in order to avoid damage to the devices in the power system.
We assume droop controllers to be installed at some nodes such
that

∑
i∈VM∪VF

Di > 0. When the power supply and demand
are time-invariant, the frequencies of all the nodes in VM ∪ VF
synchronize at a state, called synchronous state defined as follows,

θi = ωsynt + θ∗

i , i ∈ V, (2a)
ωi = ωsyn, i ∈ VM ∪ VF , (2b)
θ̇i = ωsyn, i ∈ V, (2c)
ω̇i = 0, i ∈ VM ∪ VF , (2d)

whereωsyn is the synchronized frequency deviation, and the phase
angle differences at the steady state, {θ∗

i − θ∗

j , (i, j) ∈ E}, de-
termine the power flows in the transmission lines. The explicit
synchronized frequency deviation ωsyn of the system is obtained
by substituting (2) into (1) as

ωsyn =

∑
i∈V Pi +

∑
i∈VK

ui∑
i∈VM∪VF

Di
. (3)

If and only if
∑

i∈VPi +
∑

i∈VK
ui = 0, the frequency deviation

of the steady state is zero, i.e., ωsyn = 0. This implies that a
system with only droop control, i.e., ui = 0, for i ∈ VK , can never
converge to a steady state with ωsyn = 0 if the power demand and
supply are unbalanced such that

∑
i∈VPi ̸= 0. This shows the need



Download English Version:

https://daneshyari.com/en/article/7108762

Download Persian Version:

https://daneshyari.com/article/7108762

Daneshyari.com

https://daneshyari.com/en/article/7108762
https://daneshyari.com/article/7108762
https://daneshyari.com

