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a b s t r a c t

We study Max-Product and Max-Plus Systems with Markovian Jumps and focus on stochastic stability
problems. At first, a Lyapunov function is derived for the asymptotically stable deterministicMax-Product
Systems. This Lyapunov function is then adjusted to derive sufficient conditions for the stochastic stability
of Max-Product systems with Markovian Jumps. Many step Lyapunov functions are then used to derive
necessary and sufficient conditions for stochastic stability. The results for the Max-Product systems are
then applied toMax-Plus systemswith Markovian Jumps, using an isomorphism and almost sure bounds
for the asymptotic behavior of the state are obtained. A numerical example illustrating the application of
the stability results on a production system is also given.

© 2018 Published by Elsevier Ltd.

1. Introduction

Max-Plus systems are dynamical systems which satisfy the
superposition principle in the Max-Plus algebra. The use of Max-
Plus systems was proposed in various applications involving tim-
ing, such as communication and traffic management, queueing
systems, production planning, multi-generation energy systems,
etc. (e.g. Baccelli, Cohen, Olsder, & Quadrat, 1992; Baccelli & Hong,
2000b; Cuninghame-Green, 1979; Goverde, 2007; Heidergott, Ols-
der, & Van Der Woude, 2014). Recently, the use of the closely
related class of Max-Product systems (systems which satisfy the
superposition principle in the Max-Product algebra) was pro-
posed as a tool for the modeling of cognitive processes, such as
detecting audio and visual salient events in multimodal video
streams (Maragos & Koutras, 2015). Max-Plus and Max-Product
algebras have also computational uses involving Optimal Control
problems (McEneaney, 2006) and estimation problems in prob-
abilistic models such as the max-sum algorithm in Probabilistic
Graphical models and the Viterbi algorithm in Hidden Markov
Models (e.g. Bishop, 2006).

In this work, we study stochastic Max-Plus and Max-Product
systems, where the system matrices depend on a finite state
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Markov chain. For the Max-Plus systems we focus on the asymp-
totic growth rate, whereas for the Max-Product systems on
stochastic stability. A motivation to study Max-Plus systems with
Markovian jumps is to model production systems, where the pro-
cessing or holding times are random variables (not necessarily
independent) or there are random failures and repairs, modeled
as a Markov chain. The results on max-product stochastic systems
will be used as an intermediate step. An independent motiva-
tion to study Max-Product systems is the modeling of cognitive
processes interrupted by random events. Similar problems with
Markovian delays for linear systems were studied in Beidas and
Papavassilopoulos (1993), for random failures in Papavassilopou-
los (1994) and for nonlinear time varying systems in Beidas and
Papavassilopoulos (1995), in the context of distributed parallel
optimization and routing applications. In the current work, we try
to exploit the special (Max-Product or Max-Plus) structure of the
system.

At first, deterministic Max-Product systems are considered and
their asymptotic stability is characterized using Lyapunov func-
tions. The Lyapunov function derived can be also used to study
systems which are not linear in the Max-Product algebra. We then
study Max-Product systems with Markovian Jumps and derive
sufficient conditions for their stochastic stability. Further, neces-
sary and sufficient conditions for the stochastic stability of Max-
Product systems with Markovian Jumps are derived using many
step Lyapunov functions. The results for the stochastic stability
of Max-Product systems are then used to derive bounds for the
evolution of the state of Max-Plus systems with Markovian Jumps.

The results of this work relate to the literature for the approxi-
mation of the Lyapunov exponent of Max-Plus stochastic systems.
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The existence of the Lyapunov exponent was proved in Cohen
(1988). Limit theorems for the scaled asymptotic evolution of
stochastic Max-Plus systems were proved in Merlet (2007, 2008).
Most of theworks on the approximation of the Lyapunov exponent
focus on the independent random matrix case. In Baccelli and
Hong (2000a) and Gaubert and Hong (2000) series expansions are
used in order to approximate the Lyapunov exponent andGoverde,
Heidergott, and Merlet (2008, 2011) use approximate stochastic
simulation techniques to estimate the Lyapunov exponent. In Blon-
del, Gaubert, and Tsitsiklis (2000) it is shown that the approxima-
tion of the Lyapunov exponent is an NP-hard problem. Bounds for
the tail distributions of Max-Plus stochastic systems are proposed
in Chang (1996). In Liu, Nain, and Towsley (1995), a model of Max-
Plus system with Markovian input is considered and bounds for
the tail distributions are derived. Amodel where theMarkov chain
(branching process) evolves according to a Max-Plus stochastic
system is analyzed in Altman and Fiems (2012). Bounds on the
length of the transient phase of Max-Plus systems are proved
in Nowak and Charron-Bost (2014).

Another related class of systems is SwitchingMax-Plus systems
with deterministic or stochastic switching introduced in van den
Boom and De Schutter (2006) and studied further in van den Boom
and De Schutter (2012). The basic differencewith the current work
is that the current work focuses on stochastic stability properties
whereas (van den Boom & De Schutter, 2006, 2012) study sta-
bility under arbitrary switching. Several approximation methods
in stochastic Max-plus systems control and identification were
studied in Farahani (2012).

The techniques used in thiswork closely parallel the techniques
used for the stability analysis of Markovian Jump Linear Systems
(MJLS). The study of the stochastic stability of MJLS dates back
at least to the 1960s (Bhaurucha, 1961) and today is a well-
established field (e.g. Beidas & Papavassilopoulos, 1993; Costa,
Fragoso, & Marques, 2006; Fang & Loparo, 2002; Kordonis & Pa-
pavassilopoulos, 2014; Papavassilopoulos, 1994).

1.1. Background

The Max-Plus and Max-Product algebras are used. In the Max-
Plus algebra the usual summation is substituted by maximum and
the usual multiplication is substituted by summation. In the Max-
Product algebra the usual summation is substituted by maximum
but the multiplication remains unchanged.

The Max-Plus algebra is defined on the set of extended reals
R̄ = R ∪ {−∞, +∞} with the binary operations ‘‘⊕’’ and ‘‘⊗’’.
The operation ‘‘⊕’’ stands for the maximum i.e., for x, y ∈ R̄, it
holds x ⊕ y = max{x, y}. The operation ‘‘⊗’’ corresponds to the
usual addition i.e., for x, y ∈ R̄ it holds x ⊗ y = x + y, where the
convention −∞ ⊗ ∞ = −∞ is used. For a set (xi)i∈I of extended
reals ‘‘

⨁
’’ stands for the supremum i.e.

⨁
i∈Ixi = supi∈I{xi}. For a

pair of matrices A = [Aij] and B = [Bij], the operation ‘‘⊕’’ is their
element-wise maximum, i.e.:

(A ⊕ B)ij = Aij ⊕ Bij,

and similarly is the element-wise supremum for an arbitrary set of
matrices.

For a pair of matrices A = [Aij] ∈ R̄n×m and B = [Bij] ∈ R̄m×l

theirMax-Plus productA⊗B is an n× lmatrix and its i, jth element
is given by:

(A ⊗ B)ij =

m⨁
p=1

(
Aip + Bpj

)
, (1)

where ‘‘
⨁

’’ denotes the maximum of them elements.
The Max-Product algebra is defined on R̄+ = [0, ∞], with the

binary operations ‘‘⊕’’ and ‘‘⊙’’. The ‘‘⊙’’ operation is the usual

Table 1
The algebraic operations used.

Operation Meaning

⊕ The maximum. Applies for scalars, vectors and matrices
⊗ Max-plus multiplication. Defined in (1)
⊙ Max-plus multiplication. Defined in (2)

scalar multiplication with the convention 0 ⊙ ∞ = 0. The ‘‘⊕’’
operation is defined exactly as in the Max-Plus algebra. The matrix
multiplication in the Max-Product algebra is defined by:

[A ⊙ B]ij =

m⨁
p=1

(
AipBpj

)
.

The power of a square matrix is defined by Ak
= Ak−1

⊙ A and
A0

= I . For a given square matrix A a new matrix A+ is defined as
A+

=
⨁

∞

k=0A
k. The subset R+ = [0, ∞) of R̄+ will be also used.

Max-Product multiplication distributes over ‘‘
⨁

’’, i.e.:⨁
i∈I

A ⊙ Bi = A ⊙

(⨁
i∈i

Bi

)
. (2)

The same property holds also for the Max-Plus multiplication.
In both algebras, the ‘‘⊕’’ operation has lower priority than ‘‘+’’

or ‘‘⊗’’ in the Max-Plus algebra and ‘‘·’’ or ‘‘⊙’’ in the Max-Product
algebra respectively. Let us note that there is an isomorphism
exp(·) between the Max-Plus algebra (R̄, ⊕, ⊗) and the Max-
Product algebra (R̄+, ⊕, ⊙). The notation used in this paper is
summarized in Table 1.

A unifying algebraic framework to study Max-Plus and Max-
Product systems (and also other systems) is the theory ofWeighted
Lattices (Maragos, 2013, 2017).

1.2. Notation

For a pair of vectors x = (x1, . . . , xn)T and y = (y1, . . . , yn)T ,
the inequality notation x ≤ y is used meaning that xi ≤ yi, for
all i. Similarly, the inequality notation x < y stands for xi < yi,
for all i. The infinity norm will be used i.e. ∥x∥ = maxi|xi|. We
denote by 1 the column vector of dimension n consisting of ones.
The underlying probability space is denoted by (Ω,F, P).

A function α : R+ → R+ will be called class K function if
α is increasing and α(0) = 0. A function β : R+ × R+ → R+

will be called class KL function if, for each fixed t , the function
β(·, t) is a class K function and for any fixed s, the function β(s, ·)
is decreasing and β(s, t) → 0 as t → ∞.

1.3. Problem formulation

The first class of systems considered is Max-Product systems
with Markovian jumps. The uncertainty of the system is described
by a Markov chain yk having a finite state space {1, . . . ,M} and
transition probabilities cij. That is, the evolution of yk is described
by cij = P(yk+1 = j|yk = i). A Max-Product systemwithMarkovian
jumps is described by:

xk+1 = A(yk) ⊙ xk, (3)
x0 ∈ Rn

+
.

That is, at each time step the system matrix A takes one of the
M different values A(1), . . . , A(M) according to the value of the
Markov chain.

At first, the class of deterministic Max-Product systems will be
considered. In these systems the matrix A(·) does not depend on
the Markov chain and takes a single value A.
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