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a b s t r a c t

This paper provides a principal component analysis of linear discrete-time systems on the basis of optimal
control and estimation. The analysis is to reveal the important state components which remain necessary
for reducing performance degradation under dimensional constraints on control and estimation laws.
The trade-off relations between the dimension and performance degradation are expressed as system
invariants representing the importance of each principal component, which are characterized as the
eigenvalues of matrices depending on the solutions of both Lyapunov and Riccati equations. Based on the
analysis, the paper also providesmodel reduction techniques for the systems generating the optimal input
and estimate with the desirable properties of stability, reachability, and observability being preserved in
the reduced systems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

As a way of obtaining low-order controllers, reduction of state
variables is commonly applied to the plant models or designed
controllers. The necessity of low-order controllers arises from lack
of computing power available for control. This problem occurs
in the situations that the plant is a large-scale system requiring
high computing power and that the controller is implemented in
embedded processor with low computing power.

The reduction provided in this paper is based on the established
balanced truncation (Moore, 1981) summarized as follows. The
state elements of the balanced realization are arranged in orders
of strengths in terms of the connections to the input and output
(Roberts & Mullis, 1987). The order of the system is reduced by
eliminating the trailing elements which do not have major contri-
bution to the input-to-output relation. The theoretical basis of this
method is a principal component analysis using reachability and
observability Gramians. Specifically, the importance of each state
element is represented as the square root of the eigenvalue of the
product of the Gramians. This index is exactly the singular value of
the Hankel operator mapping the past input to the future output,
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so it is invariant under similarity transformations. A notable advan-
tage of this method is that stability, reachability, and observability
are preserved in the reduced systems (Pernebo & Silverman, 1982).

Several other methods of balancing for reduction have been
developed along this line. They are based on component analy-
ses using the solutions of some Lyapunov and Riccati equations
as alternatives to the reachability and observability Gramians.
The positive real balancing (Desai & Pal, 1984) and bounded real
balancing (Opdenacker & Jonckheere, 1988) give the reduction
methods preserving positive realness and bounded realness, re-
spectively. The LQG balancing (Jonckheere & Silverman, 1983) and
H∞ balancing (Mustafa & Glover, 1991) reveal the elements which
contribute strongly to the closed-loop properties. The frequency
weighted balancing (Enns, 1984) enables to evaluate the reduction
error in frequency domain. The balancing technique is also appli-
cable to the reduction of unstable systems via fractional represen-
tation (Meyer, 1990). The details of these component analyses can
be found in Antoulas (2005) and Gugercinb and Antoulas (2004),
and other techniques such as norm approximation and moment
matching also can be seen in Antoulas (2005).

Our principal component analysis reveals the state components
strongly contributing to control and estimation performances rel-
ative to the cases without these efforts. The contributions are
measured by newly introduced indices. Such components are ex-
pressed using the solutions of both Lyapunov and Riccati equa-
tions, and their contributions are system invariants given as the
eigenvalues of matrices depending on these solutions. As in bal-
anced truncation, we propose truncation methods for the systems
generating optimal inputs and estimates to remove the elements
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withminor contributions and show that the desirable properties of
stability, reachability, and observability are preserved. Moreover,
motivated by the importance of the Hankel operator relating past
and future signals, we propose a truncation method based on a
component analysis that reveals elements important for determin-
ing the future input from the past output.

The first novelty of our analysis is that the dominant compo-
nents are determined based on optimization indices for evaluat-
ing contributions to estimation and control. The analysis (Moore,
1981) justifying the model reduction through balancing ensures
the optimality of the component extraction by introducing quan-
titative indices, but does not investigate influences on estimation
and control. The other subsequent works focus mainly on the
extensions of balancing for model reduction and thus do not fully
justify component extraction. For example, the controller reduc-
tion in Jonckheere and Silverman (1983) is based on balancing for
optimally estimated and controlled systems, but does not have
an optimality index for component extraction. Our objective is to
quantify the influences on estimation and control due to compo-
nent extraction by evaluating the resulting performances relatively
to the cases without estimation and control actions.

The second novelty of our analysis is that the dominant com-
ponents are found for the situation intermediate between the
two extremes where control and estimation are not conducted
and completely conducted for every component. The dominant
components revealed by Jonckheere and Silverman (1983) and
Moore (1981) are for these two extreme situations, so they do not
always strongly contribute to the performances in the intermedi-
ate situation. Our analysis investigates howmuch each component
contributes to the performance relative to the cases of complete
control and estimation.

The rest of this paper is organized as follows. Section 2 provides
a brief review of Lyapunov and Riccati equations playing an im-
portant role in our analyses. Using the solutions of these equations,
Sections 3 and 4 respectively conduct state component analyses for
optimal control and estimation, and Section 5 conducts an analysis
for estimation-based control. Based on the results of these anal-
yses, Section 6 provides methods of model reduction and shows
their desirable properties. Section 7 substantiates the results in
the preceding sections by numerical examples. Finally, Section 8
presents concluding remarks.

The notations in this paper are as follows. The eigenvalues of a
positive definite matrix P ∈ Rn×n are denoted by λ1(P) ≥ · · · ≥

λn(P), and the norm of a vector x ∈ Rn with respect to P is defined
as ∥x∥P :=

√
xTPx, which is simply denoted by ∥x∥when P = I . The

Frobenius norm of a matrix A ∈ Rm×n is defined as ∥A∥ :=
√
trATA.

The image of a function f is denoted by Im f , and the dimension of
a linear space X is denoted by dimX .

2. Lyapunov and Riccati equations

In this section, we present a brief review of the Lyapunov and
Riccati equations, which will be used in the subsequent analyses.
We consider the two Lyapunov equations

X = ATXA + Q , (1)

X̂ = AX̂AT
+ W (2)

and the Riccati equations

Y = ATYA + Q − ATYB(BTYB + R)−1BTYA, (3)

Ŷ = AŶAT
+ W − AŶCT(CŶCT

+ V )−1CŶAT (4)

with variables X, X̂, Y , Ŷ ∈ Rn×n and coefficients A ∈ Rn×n, B ∈

Rn×m, C ∈ Rℓ×n, Q ∈ Rn×n, W ∈ Rn×n, R ∈ Rm×m, V ∈ Rℓ×ℓ.
Here Q and W are positive semidefinite, and R and V are positive

definite. For these equations, we will make auxiliary use of the
corresponding Lyapunov difference equations

Xk−1 = ATXkA + Q , (5)

X̂k+1 = AX̂kAT
+ W (6)

and Riccati difference equations

Yk−1 = ATYkA + Q

− ATYkB(BTYkB + R)−1BTYkA, (7)

Ŷk+1 = AŶkAT
+ W

− AŶkCT(CŶkCT
+ V )−1CŶkAT. (8)

Throughout this paper, we assume that A is asymptotically stable,
that is, all the eigenvalues of A have modulus less than one. In this
case, (1) has a unique positive definite solution X , and Xk → X
as k → −∞ for any X0 ≥ 0. In the same way, (2) has a unique
positive definite solution X̂ , and X̂k → X̂ as k → ∞ for any X̂0 ≥ 0.
Furthermore, if Q = CTC and (C, A) is observable, (3) has a unique
positive definite solution Y , and Yk → Y as k → −∞ for any
Y0 ≥ 0. Similarly, if W = BBT and (A, B) is reachable, (4) has
a unique positive definite solution Ŷ , and Ŷk → Ŷ as k → ∞

for any Ŷ0 ≥ 0. These positive definite solutions are stabilizing
solutions, that is, the corresponding matrices F = A + BK for
K = −

(
BTYB + R

)−1BTYA and G = A + LC for L = −AŶCT
(
CŶCT

+

V
)−1 are asymptotically stable. We shall also use the finite-time

versions of these matrices and their convergence properties given
by Fk = A + BKk → F for Kk = −

(
BTYkB + R

)−1BTYkA → K
and Gk = A + LkC → G for Lk = −AŶkCT

(
CŶkCT

+ V
)−1

→ L.
The similarity transformation by a nonsingular matrix T ∈ Rn×n

defined as (A, B, C) ↦→ (TAT−1, TB, CT−1) induces the change of
these solutions and the related matrices; for example X and Y are
changed to T−TXT−1 and T−TYT−1, respectively, if Q = CTC , and X̂
and Ŷ are changed to T X̂T T and T Ŷ T T, respectively, ifW = BBT.

3. Component analysis for optimal control

In this section, we provide a principal component analysis for
optimal control to reveal the state components which are im-
portant for performance improvement. The principal components
and their importance are represented by the solutions of both
Lyapunov and Riccati equations.

3.1. The setup and the result

We consider the linear discrete-time system

xk+1 = Axk + Buk, (9)
yk = Cxk, (10)

where xk ∈ Rn is the state, uk ∈ Rm is the input, and yk ∈ Rℓ is
the output. Here it is assumed that A is asymptotically stable, and
(C, A) is observable. The control law for this system is the function
f : Rn

→ ℓ2 which determines the control input as

u = f (x0).

The optimal regulation problem is to find the control law which
minimizes the performance function

J(x0, f ) :=

∞∑
k=0

(
xTkQxk + uT

kRuk
)
,

where Q = CTC . As is well known, the optimal performance is

J∗(x0) = min
f

J(x0, f ) = xT0Yx0,
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