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a b s t r a c t

Pareto-based guaranteed cost control (GCC) problem of uncertain mean-field stochastic systems is
investigated in infinite horizon. Firstly, the Pareto game of nominal mean-field stochastic systems is
studied. Applying the convexity of the cost functionals, it is shown that all Pareto efficient solutions
can be obtained by solving a weighted sum optimal control problem, based on which, Pareto-based
GCC problem is solved by the GCC of the weighted sum objective functional. Secondly, applying the
Karush–Kuhn–Tucker (KKT) conditions, the necessary conditions for the existence of the Pareto-based
guaranteed cost controllers are derived. In particular, it turns out that all controllers are expressed as
linear feedback forms involving the state and its mean based on the solutions of the cross-coupled
generalized algebraic Riccati equations (CGAREs). Thirdly, this paper presents an LMI-based approach to
reduce greatly the computational complexity in the controller design. Finally, two examples are given to
show the effectiveness of the proposed results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic games have been extensively researched by many
scholars; see, e.g., Basar and Olsder (1999), Bernhard, Gaitsgory,
and Pourtallier (2009), Engwerda (2005), Yong (2015) and the
references therein. Among various dynamic games, the Pareto
game deals with the cooperation between two or more players.
In this situation, no player can determine his cost unilaterally.
Based on how the players divide their control efforts, each player
faces a whole set of possible outcomes. If there are two control
strategies v and w such that all players have a lower cost when
strategy v is carried out, we say that the solution induced by
control strategy v dominates the solution induced by the control
strategy w. So, dominance means that the outcome is better for all
players. Following this line of thinking, it is reasonable to consider
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only those cooperative outcomes in which the costs of all players
cannot be improved upon simultaneously, the so-called Pareto
solutions. Pareto optimality is important in the studies of economic
efficiency and income distribution. Also, it plays a central role in
the design of investment policies to minimize investment cost and
risk, simultaneously (Wu, Chen, & Zhang, 2017). Over the past few
decades, the Pareto optimality has been used to analyze some of
the most widely used models in economic theory, such as opti-
mal economic growth, environmental economics and engineering
(Acemoglu, 2008; Dockner, Jorgensen, Long, & Sorger, 2001; Ram-
sey, 1928). There have been a great deal of works on Pareto opti-
mality, we refer the reader to Engwerda (2008, 2010), Mukaidani
(2013), Mukaidani and Xu (2009) and Reddy and Engwerda (2013,
2014). For instance, Engwerda (2008) determined the set of Pareto
efficient equilibria for the regular indefinite LQ control problem
of linear affine systems. In Engwerda (2010), Engwerda further
presented necessary and sufficient conditions for the existence
of a Pareto solution for the finite horizon cooperative differential
game of nonlinear systems. Reddy and Engwerda (2013) derived
the existence conditions of the Pareto optimal solutions for the
LQ infinite horizon cooperative differential games and investigated
the relationship between Pareto optimality and weighted sum
minimization. Reddy and Engwerda (2014) generalized the results
of Engwerda (2010) to the infinite horizon case. However, up to
now, most of the work is about deterministic systems, there are
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few results on stochastic systems. Mukaidani and Xu (2009) ob-
tained the decentralized infinite horizon stochastic Pareto-optimal
static output feedback strategy for a class of weakly coupled sys-
tems with state-dependent noise. In Mukaidani (2013), Mukaidani
discussed the Pareto and Nash games for a class of linear stochastic
delay systems governed by Itô’s stochastic differential equation,
respectively.

Mean-field theory was developed to study the collective be-
haviors resulting from individuals’ mutual interactions in vari-
ous physical and sociological dynamical systems (Huang, Caines,
& Malhamé, 2007; Lasry & Lions, 2007; Tembine, Zhu, & Basar,
2014). Huang et al. (2007) investigated large population stochastic
dynamical games with mean-field terms. Lasry and Lions (2007)
introduced similar problems from the viewpoint of the mean-
field theory. Subsequently, Tembine et al. (2014) studied the risk
sensitivity of the mean-field game. According to the mean-field
theory, the interactions among agents are modeled by mean-field
terms. When the number of the individuals goes to infinity, the
mean-field termwill approach the expected value. Thus, it involves
not only the state and the control but also their mathematical
expectations inmean-field stochastic differential equations.Mean-
field approach has been widely applied to various fields such as
engineering, finance and economics; see, e.g., Bensoussan, Frehse,
and Yam (2013) and the reference therein. In recent years, there is
an increasing interest in mathematics and control theory (Ahder-
sson & Djehiche, 2011; Bensoussan, Sung, Yam, & Yung, 2016;
Elliott, Li, & Ni, 2013; Huang, Li, & Yong, 2015; Ma, Zhang, & Zhang,
2016; Ma, Zhang, Zhang, & Chen, 2015; Ni, Elliott, & Li, 2015;
Yong, 2013). Utilizing the mean-field type stochastic maximum
principles, Andersson and Djehiche (2011) solved the mean–
variance portfolio selection problem. Using the adjoint equation
approach, Bensoussan et al. (2016) investigated the unique exis-
tence of equilibrium strategies for a class of LQ mean field games.
Elliott et al. (2013) presented necessary and sufficient conditions
for the solvability of discrete-time mean-field stochastic LQ opti-
mal control problems and derived the optimal control in terms of
the solutions to two Riccati difference equations. Ni et al. (2015)
extended the results obtained in Elliott et al. (2013) from the
finite horizon to the infinite horizon. Ma et al. (2015) investigated
stochastic H2/H∞ control of the mean-field type continuous-time
systems with state- and disturbance-dependent noise. In Ma et al.
(2016), Ma et al. considered an H∞-type control for mean-field
stochastic differential equations and gave a sufficient condition for
the existence of a stabilizing H∞ controller in terms of the coupled
nonlinear matrix inequalities. Yong (2013) studied the LQ optimal
control problem for mean-field stochastic differential equations
with deterministic coefficients. Huang et al. (2015) generalized the
results of Yong (2013) to the infinite horizon case. However, most
of the existing results are about the H∞ control, the mixed H2/H∞

control and the LQ optimal control. To the best of our knowledge,
there are few results concerned about the Pareto game of mean-
field stochastic systems.

It is well known that uncertainty occurs in many engineering
systems and is frequently the sources of instability and perfor-
mance degradation (Dullerud & Paganini, 2000). In recent years,
considerable attention has been paid to robust controller de-
signs for uncertain systems, where guaranteed cost control (GCC)
is an effective design method. This approach has the advan-
tage of placing an upper bound on the closed-loop value of a
given performance index, and it is guaranteed that the result-
ing closed-loop system is asymptotically stable. Although, there
have been a lot of works on GCC (Petersen & McFarlane, 1994;
Ugrinovskii, 2000; Ugrinovskii & Petersen, 2000), few of them
are about uncertain systems with multiple decision makers. In

2009, the reference (Mukaidani, 2009) first investigated the GCC
problem for a class of uncertain stochastic systemswithN decision
makers, where the Pareto efficient strategies were introduced to
describe the mutual cooperation among the decision makers. Ref-
erence (Mukaidani, 2009) provided us a useful idea to deal with
various control problems, such as controllability, stabilizability and
adaptation, of the game-based controlled systems.

Motivated by the above discussion, in this paper, we con-
sider the Pareto-based GCC problem of the uncertain mean-field
stochastic Itô systems. Our work extends the results in Mukaidani
(2009) to themean-field stochastic systems. The appearance of the
mean-field terms makes this study more challenging. In addition,
compared with Mukaidani (2009), the new contributions of this
paper are as follows: (i) We discuss the relationship between the
Pareto optimality and the weighted sum minimization, and point
out that these two concepts are equivalent under the existing
conditions. (ii) On account of the equivalence, we study the Pareto
game of nominal mean-field stochastic systems and derive all
Pareto efficient strategies basedon the solutions of twogeneralized
algebraic Riccati equations (GAREs).

The rest of this paper is organized as follows: Section 2 presents
some useful definitions and lemmas. Section 3.1 is devoted to
investigating the Pareto game of nominal mean-field stochastic
systems. By using the relationship between the Pareto optimality
and the weighted sum minimization, it is shown that all Pareto
efficient strategies can be obtained via the weighted sum method.
Section 3.2 proceeds with the discussion of the Pareto-based GCC
problem for the uncertain mean-field stochastic systems. Based on
the equivalence between the Pareto optimality and the weighted
sum minimization, the Pareto-based GCC problem is transformed
into the GCC of the weighted sum objective functional. Employing
the KKT theorem, the necessary conditions are obtained via the
solvability of the CGAREs. Section 4 employs the LMI approach
to simplify the computational complexity. Section 5 provides two
examples to show the effectiveness of the proposed results. Finally,
we end this paper in Section 6 with a concluding remark.

Notation: Rn: the set of all real n-dimensional vectors. Rm×n: the
set of all m × n real matrices. A > 0 (resp. A ≥ 0): A is a real
positive definite (resp. positive semi-definite) symmetric matrix.
AT : the transpose of a matrix A. Tr(A): the trace of a square matrix
A. In: an×n identitymatrix.E(x): themathematical expectation of a
random variable x. ∥x∥: the Euclidean norm of a vector x. ∥A∥F : the
Frobenius norm of a matrix A. A := {α = (α1, α2, · · · , αN )| 0 ≤

αi ≤ 1 and
∑N

i=1αi = 1}.

2. Preliminaries

In this section, we consider the following uncertain mean-field
stochastic system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx(t) =
[
(A + ∆A(t))x(t) + (̂A + ∆Â(t))Ex(t)

+ (B + ∆B(t))u(t) + (̂B + ∆̂B(t))

×Eu(t)
]
dt +

[
q1Cx(t) + q2ĈEx(t)

+ q3Du(t) + q4D̂Eu(t)
]
dw(t),

x(0) = ξ,

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input,
w(t) is a one-dimensional standard Wiener process that is defined
on the filtered probability space (Ω,F,P;Ft ) with Ft = σ (w(s) :

0 ≤ s ≤ t). ξ is an F0-measurable random vector. A, Â, B, B̂, C , Ĉ , D
and D̂ are knownmatrices of appropriate dimensions.∆A(t),∆Â(t),
∆B(t), ∆̂B(t) represent the uncertainties of system (1), which are
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