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a b s t r a c t

We investigate the design of a prediction-based controller for a linear system subject to a time-varying
input delay, not necessarily First-In/First-Out (FIFO). This means that the input signals can be reordered.
The feedback law uses the current delay value in the prediction. It does not exactly compensate for the
delay in the closed-loop dynamics but does not require to predict future delay values, contrary to the
standard prediction technique. Modeling the input delay as a transport Partial Differential Equation, we
prove asymptotic stabilization of the system state, that is, robust delay compensation, providing that the
average L2-norm of the delay time-derivative over some time-window is sufficiently small and that the
average time between two discontinuities (average dwell time) is sufficiently large.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Time-delays are ubiquitous in engineering systems. They can
take the form of communication lags or physical dead-times and,
in all cases, often reveal troublesome in the design and tuning of
feedback control laws. Delays are a central concern for numerous
systems. When delay stems from transportation of material, as
observed in mixing plants for liquid or gaseous fluids (Chèbre,
Creff, & Petit, 2010; Petit, Creff, & Rouchon, 1998), automotive
engine and exhaust line (Depcik & Assanis, 2005) or heat collector
plant (Sbarciog, De Keyser, Cristea, & De Prada, 2008), the dead-
time satisfies the First-In/First-Out (FIFO) principle by definition,
i.e., the delay D is such that Ḋ(t) < 1 for all time. However, this
is not always the case. For example, communication delays can be
subject to sudden variations and not satisfy the FIFO principle. This
feature, sometimes referred to as fast-varying delay (see Seuret,
Gouaisbaut, & Fridman, 2013; Shustin& Fridman, 2007), can also be
exhibited for state- or input-dependent input delay systems (Dieu-
lot & Richard, 2001), in which the delay variations can be related
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to the input in a very intricate manner, like, e.g., for crushing mill
devices (Richard, 2003).

We investigate the design of a prediction-based control law
(Artstein, 1982; Kwon & Pearson, 1980; Manitius & Olbrot, 1979;
Smith, 1959), which is state-of-the-art for constant input de-
lay (Bresch-Pietri, Chauvin, & Petit, 2012; Gu & Niculescu, 2003;
Jankovic, 2008; Mazenc & Niculescu, 2011; Michiels & Niculescu,
2007; Moon, Park, & Kwon, 2001) but has only been more recently
used for time-varying delays (see Krstic, 2009 or Nihtila, 1991).
To compensate for a varying input delay, the prediction has to be
calculated over a time window the length of which matches the
value of the future delay. In other words, one needs to predict
the future variations of the delay to compensate for it. This is
the approach followed in Witrant (2005) for a communication
time-varying delay, the variations of which are provided by a
given known model. It has also been used in Bekiaris-Liberis and
Krstic (2012) and Bekiaris-Liberis and Krstic (2013a) for a state-
dependent delay or in Bekiaris-Liberis and Krstic (2013b) for a
delay depending on delayed state, where variations are anticipated
by a careful prediction of the system state. However, inmany cases,
it is not possible to model the delay and, even if so, to predict the
future delay values. For this reason, in this paper, in lieu of seek-
ing exact delay compensation, we consider a prediction horizon
equal to the current delay value, which is assumed to be known.
This relaxed assumption is realistic. The delay itself can vary to a
large extent, can be discontinuous and is not necessarily FIFO. By
contrast with previous works accounting explicitly for the delay
(that is, without recasting it as a disturbance) and assuming that
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Fig. 1. Example of architecture where the controller knows the current delay value.
The communication between the controller and the plant is subject to a delay, while
the one between the plant and the controller is not (as they are using different
communication paths). The controller is equipped with an internal clock and sends
a time stamp with each control input to the block [System + Actuator]. This block
then sends back to the controller this (delayed) time stamp, after receiving it. By
comparing this delayed time stampwith the time returned by its internal clock, the
controller then has access to the current delay affecting the communication path.

Ḋ(t) ≤ 1 for t ≥ 0 (see Bekiaris-Liberis & Krstic, 2013c; Figueredo,
Ishihara, Borges, & Bauchspiess, 2011; Yue & Han, 2005), we allow
the delay to be such that Ḋ(t) > 1 on some interval of time. A
delay of this type, considered for the first time in the preliminary
study (Bresch-Pietri & Petit, 2014) in a prediction design context,
is also considered in Mazenc, Malisoff, and Niculescu (2017) and
Mazenc, Niculescu, and Krstic (2012), but, in these papers the delay
is supposed to be equal to a function of class C 1 plus a small
discontinuous part, treated as a disturbance. We do not impose
such an assumption; in otherwords, we consider delayswithmore
general types of discontinuities, covering the casewhere they have
large discontinuous jumps.

We follow our preliminary study (Bresch-Pietri & Petit, 2014)
which, as a first step, considered the delay function to be contin-
uously differentiable (a demanding assumption from a practical
point of view) and apply the novel time-varying version of Halanay
inequality proposed inMazenc et al. (2017) to address delay jumps.
In this paper, as a result, the delay is only assumed to be piecewise
continuously differentiable, encompassing potential sudden delay
jumps and discontinuities, which are quite common, e.g., in the
context of networks and communication protocols. Recasting the
problem as an Ordinary Differential Equation (ODE) cascaded with
a transport Partial Differential Equation (PDE), we use a backstep-
ping transformation recently introduced in Krstic and Smyshlyaev
(2008) to analyze the closed-loop stability. We prove asymptotic
convergence of the system state provided that the delay time-
derivative is sufficiently small in average, in the sense of an av-
erage L2-norm, and that the delay non-differentiability times are
sufficiently sparse in time, in the sense of the average dwell time
(Hespanha & Morse, 1999).

The paper is organized as follows. In Section 2, we introduce the
problem at stake, before designing our control strategy and stating
ourmain result. The latter is proven in Section 3. Section 4 presents
an illustrative simulation example.

Notations. In the following, a function f is said to be piecewise con-
tinuous on an interval [a, b] ⊂ R if the interval can be partitioned
by a finite number of points a = t0 < t1 < · · · < tn = b so
that f is continuous on each subinterval (ti−1, ti) and f admits finite
right-hand and left-hand limits at ti, i ∈ {0, . . . , n}. A function
f is said to be piecewise continuous on R if the restriction of f
to any interval is piecewise continuous. A function f is said to
be piecewise continuously differentiable on R if both f and f ′ are
piecewise continuous on R. Standardly, we denote Cpw(I,R) (resp.
Cpw(R,R)) the set of real-valued piecewise continuous function on
an interval I ⊂ R (resp. onR) and f (t+) (resp. f (t−)) the right-hand
(resp. left-hand) limit of f at point t , if it exists.

|·| is the usual Euclidean norm and, for a signal u(x, ·) for x ∈

[0, 1], ∥u(·)∥ denotes its spatial L2-norm, i.e.,

∥u(t)∥ =

 ∫ 1

0
u(x, t)2dx. (1)

In the sequel, integrals should be understood in the Riemann
integrability sense, that is, when the signal x ↦→ u(x, ·) is not
defined on a set S ⊂ [0, 1] of measure zero, we write

∥u(t)∥ =

 ∫ 1

0
u(x, t)2dx =

 ∫
[0,1]\S

u(x, t)2dx (2)

and similarly for time signals. Finally, for a matrix M the eigen-
values of which are all real numbers, λ(M) and λ(M) refer to the
minimal and maximal eigenvalues ofM .

2. Problem statement and control design

We consider the following (potentially) unstable linear dynam-
ics

Ẋ(t) = AX(t) + BU(t − D(t)) (3)

in which X ∈ Rn, U is scalar and the delay D satisfies the following
assumption.

Assumption 1. The delay D is a piecewise continuously differen-
tiable function with set of time instants of non-differentiability

T = {ti , i ∈ N} (4)

and which satisfies

(i) D(t) ∈ [D,D] for t ≥ 0, with 0 < D ≤ D
(ii) there exists∆ > 0 such that ti − tj ≥ ∆, (tj, ti) ∈ T 2, i > j
(iii) there exist T > 0 and δ > 0 such that, for all i ∈ N,

1
T

∫ t+T

t
Ḋ(s)2ds ≤ δ , t ∈ (ti, ti+1 − T ), ti ∈ T . (5)

Note that no assumption ismade a priori on the time-derivative
ofD. In particular, it is possible that Ḋ(t) > 1 for certain intervals of
time. Also, it isworth observing thatD is not necessarily continuous
at time ti ∈ T .

In the sequel, we consider that the current value of the delay is
known. For instance, this is the case of the architecture presented
in Fig. 1.

Our control objective is to design a prediction-based controller
stabilizing the plant (3), using the knowledge of the current value
of the delay D(t) at time t ≥ 0. With this aim in view, consider the
following control law

U(t) = K
ï
eAD(t)X(t) +

∫ t

t−D(t)
eA(t−s)BU(s)ds

ò
(6)

in which the feedback gain K is such that A + BK is Hurwitz.
This controller approximately forecasts value of the state over a

time window of varying length D(t). Indeed, this prediction is only
an approximation in the sense that it does not correspond to the
future value X(t + D(t)) as

X(t + D(t)) = eAD(t)X(t) (7)

+

∫ t

t−D(t)
eA(t−s)BU(s + D(t) − D(s))ds.

However, this last expression is not implementable as it is not
always causal.1 However, it can be approximated by the one used
in (6) if D(t) − D(s) ≈ 0 for ‘‘most’’ instants t , i.e., under the
assumption that the variations of the delay are sufficiently small

1 In details, if there exists s ∈ [t −D(t), t] such that s−D(s) ≥ t −D(t), i.e., if the
delay D(t) is suddenly high and the information received at time t older than some
previously received), this expression is not causal while the one employed in (6)
always is.
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