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a b s t r a c t

A stochastic self-triggered model predictive control (SSMPC) algorithm is proposed for linear systems
subject to exogenous disturbances and probabilistic constraints. The main idea behind the self-triggered
framework is that at each sampling instant, an optimization problem is solved to determine both the next
sampling instant and the control inputs to be applied between the two sampling instants. Although the
self-triggered implementation achieves communication reduction, the control commands are necessarily
applied in open-loop between sampling instants. To guarantee probabilistic constraint satisfaction,
necessary and sufficient conditions are derived on the nominal systems by using the information on
the distribution of the disturbances explicitly. Moreover, based on a tailored terminal set, a multi-step
open-loop MPC optimization problem with infinite prediction horizon is transformed into a tractable
quadratic programming problem with guaranteed recursive feasibility. The closed-loop system is shown
to be stable. Numerical examples illustrate the efficacy of the proposed scheme in terms of performance,
constraint satisfaction, and reduction of both control updates and communications with a conventional
time-triggered scheme.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Networked control systems are usually subject to constraints
and uncertainties. The constraints include not only the traditional
system constraints, such as state constraints, but also communica-
tion constraints, such as a limited bandwidth inwireless communi-
cation networks. For such systems, an integrativemodel predictive
control (MPC) and event-based control approach is a natural idea
which could ensure the system constraint satisfaction and trade off
the performance of control systems and the usage of communica-
tion resources. Thus, the research of event-based MPC is of great
interest.

Two specific types of event-based control are event-triggered
and self-triggered control. Different from event-triggered control
which requires the continuous monitoring of system states, self-
triggered control determines the next update time in advance
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based on the information at the current sampling instant. Also, self-
triggered control allows the shut-downof the sensors between two
updates, resulting in a lower sampling frequency to prolong the
lifespan of sensors powered by batteries. Please refer to Heemels,
Johansson, and Tabuada (2012) and Hetel et al. (2017) for an
overview of event-based control.

This paper considers a self-triggered implementation of
stochastic MPC (SMPC) for linear systems with stochastic distur-
bances. One main feature of SMPC is the presence of probabilistic
constraints, which require the constraints to be satisfied with
given probability thresholds. Such constraints can mitigate the
conservativeness introduced by hard constraints of robust MPC
(RMPC). SMPChas found applications in diverse fields, e.g., building
climate control (Long, Liu, Xie, & Johansson, 2014) or chemical
processes (Qin & Badgwell, 2003). To the best of our knowledge,
stochastic self-triggered MPC (SSMPC) has not been explored up
to now. One remarkable challenge is how to characterize the
‘propagation’ of uncertainties during two sampling instants and
formulate a computationally tractable optimization problem for
determining sampling instants and control design.

Some developments of self-triggered MPC are available. Many
of these results are proposed for systems without uncertain-
ties (Barradas Berglind, Gommans, & Heemels, 2012; Hashimoto,
Adachi, & Dimarogonas, 2017; Henriksson, Quevedo, Sandberg,
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& Johansson, 2012). For systems with uncertainties, most results
account for the synthesis of self-triggered control and RMPCwhich
aims to guarantee robust constraint satisfaction. The interested
reader can refer to Aydiner, Brunner, and Heemels (2015) and
Brunner, Heemels, and Allgöwer (2014, 2016). By maximizing the
inter-sampling time subject to constraints on the cost function,
a robust self-triggered MPC (RSMPC) algorithm is presented for
constrained linear systems with bounded additive disturbances
in Brunner et al. (2014), which employs the robust Tube MPC
method in Mayne, Seron, and Raković (2005) to guarantee con-
straint satisfaction. In Brunner et al. (2014), all constraint pa-
rameters are determined by fixing the maximal inter-sampling
time, which has the drawback of leading to a conservative region
of attraction. To alleviate the conservatism, a RSMPC algorithm
based on a more advanced Tube method (Raković, Kouvaritakis,
Findeisen, & Cannon, 2012) is proposed in Aydiner et al. (2015),
where the cost function is defined depending on the length of the
inter-sampling time such that the constraint parameters are not
affected by the maximal sampling interval. By combining with the
self-triggeringmechanism in Aydiner et al. (2015), a recent RSMPC
method is presented in Brunner et al. (2016) with the focus of
extending the Tube method in Chisci, Rossiter, and Zappa (2001)
to evaluate the effect of the uncertainty on the prediction of the
self-triggered setup.

Inspired by Aydiner et al. (2015) and Brunner et al. (2016),
we design a self-triggered strategy for SMPC. Notice that inherent
differences between SMPC and RMPC make our SSMPC algorithm
largely different from the ones presented in Aydiner et al. (2015)
and Brunner et al. (2016). Following the ideas of Tube MPC (Kou-
varitakis, Cannon, Raković, & Cheng, 2010), we construct stochastic
tubes as tight as possible by explicitly using the distributions of
the disturbances. Since a crucial assumption of feedback at every
time step in Kouvaritakis et al. (2010) is not satisfied in the self-
triggered setting (which allows open-loop operations between
sampling instants), some appropriate and non-trivial modifica-
tions are needed: (i) by considering the multi-step open-loop op-
eration between control updates, three predicted controllers are
defined for different phases of the prediction horizon, making it
more complex than (Kouvaritakis et al., 2010) to evaluate the effect
of the uncertainty on predictions and construct equivalent deter-
ministic constraints; (ii) the inter-sampling time as an optimizing
variable is included in the cost function and a tuning parameter
is introduced to provide a trade-off between performance and
communication; (iii) an improved terminal set, which is adapted to
different inter-sampling times, is designed tomake the constraints
recursively feasible.

The present paper is the firstwork on SSMPC,which extends the
existing literatures on MPC considerably. The main contributions
are summarized in the following. (i) Our joint design of the self-
triggering mechanism and the SMPC controller effectively reduces
the amount of communication, while guaranteeing control perfor-
mance with specific level of trade-off. (ii) The MPC optimization
problem is transformed into a tractable quadratic programming
problem by using information on the disturbance distribution.
(iii) For the self-triggeringmechanism, the probability of constraint
violation can be tight to the specified limit. (iv) Both recursive fea-
sibility and closed-loop stability are guaranteed. To illustrate the
effectiveness of the algorithm, numerical experiments are carried
out to compare the proposed SSMPC with a periodically-triggered
SMPC (PSMPC), RSMPC, and unconstrained MPC (LQR).

The remainder of this paper is structured as follows. Prob-
lem formulation is set up in Section 2. In Section 3, a multi-step
open-loop MPC optimization problem is formulated incorporating
probabilistic constraints and specific terminal sets. In Section 4, a
SSMPC algorithm is developed and main results are established.
Section 5 presents numerical simulations and Section 6 concludes.

Fig. 1. The self-triggered MPC framework.

Notation 1.1. Let N ≜ {0, 1, . . .}. For some q, s ∈ N and q < s, let
N≥q, N>q, N≤q, N<q, and N[q,s] denote the sets {r ∈ N | r ≥ q},
{r ∈ N | r > q}, {r ∈ N | r ≤ q}, {r ∈ N | r < q}, and
{r ∈ N | q ≤ r ≤ s}, respectively. Let I and 0 denote an identity
matrix and a zero matrix or zero vector of appropriate dimension.
When ≤, ≥, <, >, and |·| are applied to vectors, they are interpreted
element-wise. For W ∈ Rn×n, W ≻ 0means that W is symmetric and
positive definite. For x ∈ Rn and W ≻ 0, ∥x∥2

W ≜ xTWx. For xi ∈ Rn,
i ∈ N, define

∑b
i=axi = 0 if a > b. Pr denotes the probability, E

the expectation, Ek the conditional expectation of a random variable
given the state at time k, and (k+ i|k) a prediction of a variable i steps
ahead from time k.

2. Problem formulation

The self-triggered MPC framework of this paper is shown in
Fig. 1, in which the notations are introduced below. Consider a
linear time-invariant system

x(k + 1) = Ax(k) + Bu(k) + w(k), k ∈ N, (1)

where x(k) ∈ RNx is the state, u(k) ∈ RNu the control input, w(k) ∈

RNw the stochastic disturbance, and (A, B) a stabilizable pair. Notice
that Nx = Nw . Assume that w(k), k ∈ N, are independent and
identically distributed (i.i.d.) and the elements of w(k) have zero
mean. The distribution Fi of the ith element ofw(k) is assumed to be
known and continuous with a bounded support [−σi, σi], σi > 0,
and correspondingly we have w(k) ∈ W ≜ {w | |w| ≤ σ }, σ =

[σ1 σ2 . . . σNw ]
T . Moreover, system (1) is subject to nc probabilistic

constraints Pr{gT
ℓ x(k) ≤ hℓ} ≥ pℓ, ℓ ∈ N[1,nc ], k ∈ N, where

gℓ ∈ RNx , hℓ ∈ R, and pℓ ∈ [0, 1]. In the sequel, we will focus on
one probabilistic constraint

Pr{gT x(k) ≤ h} ≥ p, k ∈ N, (2)

as the other constraints can be treated in a similar way.
In a periodically-triggered MPC scheme, the predictive control

input at time k can be designed as

u(k + i|k) = Kx(k + i|k) + c(k + i|k), i ∈ N, (3)

where K ∈ RNu×Nx is chosen offline such that the matrix Φ ≜
A + BK is Schur stable and for a prediction horizon N ∈ N≥1,
c(k+i|k) for i ∈ N≤N−1 are optimization variables and c(k+i|k) = 0
for i ∈ N≥N . At each time instant k, u(k) = Kx(k)+ c(k|k) is applied
to the system.

To reduce the amount of communication, in the self-triggered
scheme, the states x(k) are only measured and transmitted to the
controller at sampling instants kj ∈ N, j ∈ N, which evolve as
kj+1 = kj + Mj with k0 = 0. The inter-sampling time Mj ∈

N[1,N−1] is determined by a self-triggering mechanism based on
the state at sampling instant kj. Since the values of x(kj + i|kj),
i ∈ N[1,Mj−1], cannot be determined at time kj in the presence of
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