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a b s t r a c t

This paper focuses on estimation and cancellation of unknown sinusoidal disturbances in a known LTI
system with the presence of a known output delay. Parametrizing the disturbance and representing the
delay as a transport PDE, the problem is converted to an adaptive control problem for ODE–PDE cascade.
An existing state observer is used to estimate the ODE system states. The exponential stability of the
equilibrium of the closed-loop and error system is proved. The perfect estimation of the disturbance and
state is shown. Moreover, the convergence of the state to zero as t → ∞ is achieved in the closed loop
system. The effectiveness of the controller is demonstrated in a numerical simulation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Cancellation of sinusoidal disturbances has been among diffi-
cult challenges faced by control engineers, with numerous appli-
cations such as active suspension systems (Basturk, 2016), active
noise control (Bodson, Jensen, & Douglas, 2001) andmarine vessels
(Basturk & Krstic, 2013). A common method to address this prob-
lem is to model the disturbance as the output of a linear dynamic
system which is called an exosystem. Including the exosystem in
the feedback loop, disturbance effect can be compensated in the
plant response. This method is known as internal model principle
(Francis & Wonham, 1975).

The problem of disturbance rejection for linear systems by
output feedback is studied in Kim and Shim (2015) andMarino and
Tomei (2013). Authors assume that the linear system is known but
the disturbance is the output of an uncertain exosystem. However,
the Refs. Kim and Shim (2015) and Marino and Tomei (2013) con-
sider no delay in output channels while designing the controllers.

Since time delay is a common phenomenon observed in most
real-world applications, the studies have focused on developing
control methods in which delays arise. Adaptive control design
techniques for systems with unknown ODE parameters and input
delay are given in Evesque, Annaswamy, Niculescu, and Dowling
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(2003) and Niculescu and Annaswamy (2003). The problem of
adaptive stabilization is solved for the systems with unknown pa-
rameters and distributed input delay in Bekiaris-Liberis, Jankovic,
and Krstic (2013). The idea of representing time delay as dynamic
of PDE is introduced in Xu, Yung, and Li (2006). Inspiring by Xu et
al. (2006), an adaptive observer for PDEs is developed in Krstic and
Smyshlyaev (2008) with a backstepping like design technique to
compensate a delay.

The cancellation of sinusoidal disturbance for known and un-
known LTI systemswith input delay is studied in Basturk andKrstic
(2015), Pyrkin and Bobtsov (2016) and Pyrkin et al. (2015), respec-
tively. Moreover, the case where the delay appears in the state
is considered in Basturk (2017). The output regulation problem is
addressed in Kerschbaum and Deutscher (2016), Li, Tang, Zhang,
andZou (2012), Tang and Li (2008), Yu andWang (2015) andZhang,
Tang, and Zhang (2010), for output-delayed known linear systems.
An observer design for output delayed systemswithmodel param-
eter uncertainty is given in Ahmed-Ali, Giri, Krstic, and Lamnabhi-
Lagarrigue (2016). Moreover, for known linear systems with
simultaneous state, input and output delay, disturbance cancella-
tion algorithms are proposed in Lu and Huang (2014) and Yoon
and Lin (2016). However, the studies (Kerschbaum & Deutscher,
2016; Li et al., 2012; Lu &Huang, 2014; Tang & Li, 2008; Yoon & Lin,
2016; Yu &Wang, 2015; Zhang et al., 2010) assume that exosystem
is known and can be used in the controller. To the best of our
knowledge, no attempt has been made to reject the disturbance,
which is the output of unknown exosystem, in LTI systems with
output delay.

The problem that we consider in this paper is the combination
of disturbance cancellation by output feedback and delay in the
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measurement. Contrary to Kerschbaum and Deutscher (2016), Li
et al. (2012), Lu and Huang (2014), Tang and Li (2008), Yu and
Wang (2015), Yoon and Lin (2016) and Zhang et al. (2010), the
unknown disturbance in our system is generated by an uncertain
exosystem. Ourmain contribution is to solve this type of a problem
by combining two methods. We first use the technique given in
Nikiforov (2004) to express the disturbance in a parametrized form
and then, employ an adaptive observer proposed in Ahmed-Ali et
al. (2016). In addition to this, by employing the perfect estimation
of the disturbance and the state, we design an adaptive controller
that rejects the disturbance and makes the equilibrium of the
closed-loop system exponentially stable.

The paper is organized as follows. In Section 2, the problem def-
inition is stated. The disturbance representation and disturbance
parametrization are given in Sections 3 and 4, respectively. In Sec-
tion 5, the controller design and stability theorem are presented.
In Section 6, the proof of stability theorem is given. Finally, an
example simulation is illustrated in Section 7.

Notation. Throughout the paper, we use the following notations;
Bi is a column vector whose ith element is 1 and the rest is
0, state/parameter estimation and estimation errors are denoted
with the symbols ‘‘ˆ’’ and ‘‘˜’’, respectively. As an example, estima-
tion error of X state is X̃ = X̂ − X where X̂ is the estimation of
X . We use subscript i for ith scalar element in general, however Ii
and 0i denote i × i identity matrix and i × 1 column zero vector,
respectively. The Euclidean norm is denoted by | · |. We use ∂t and
∂x to denote time and spatial derivatives of a function respectively.

2. Problem statement

We consider the single-input single-output LTI system

Ẋ(t) = AX(t) + B
(
U(t) + ν(t)

)
, (1)

Y (t) = CX(t − D), (2)

whereD ∈ R is the known delay, X = [X1, . . . , Xn]
T

∈ Rn,U(t) ∈ R
is the input and

A =
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−an−1

... In−1

...

−a0 0T
n−1

⎤⎥⎥⎥⎥⎦ , B =

⎡⎢⎢⎣
b1
b2
...

bn

⎤⎥⎥⎦ , C =

⎡⎢⎢⎣
1
0
...

0

⎤⎥⎥⎦
T

(3)

with 0n−1 = [0, . . . , 0]T ∈ Rn−1. The particular form of A can
always be achieved if (C, A) is observable. The unknown sinusoidal
disturbance ν(t) ∈ R is given by

ν(t) = d +

q∑
i=1

gi sin(wit + φi) (4)

where d, gi, wi, φi ∈ R are unknown.
The following PDE can represent the output Eq. (2) as

∂ty(x, t) = ∂xy(x, t), x ∈ [0,D] (5)
y(D, t) = CX(t), (6)

Y (t) = y(0, t). (7)

The solution of the transport PDE is given by y(x, t) = CX(t+x−D).
The sinusoidal disturbance ν(t) can be represented as the out-

put of a linear exosystem,

Ẇ (t) = SW (t), (8)

ν(t) = hT
νW (t), (9)

where the state W (t) ∈ R2q+1. The matrix S comprises the
unknown frequency of the sinusoidal disturbance ν(t). Constant

bias term d, amplitude gi and phase φi are determined by initial
condition of (8), are thus unknown.Without loss of generality, one
can choose output vector hT

ν such that (hT
ν , S) becomes observable

pair.
The disturbance ν(t) is not measured. The output Y (t) is the

only available measurement. Regarding the plant (1)–(2) and the
exosystem (8)–(9), we make the following assumptions:

Assumption 1. The frequencies of the disturbance are distinct,
ωi ̸= ωj for i ̸= j, and the number of the distinct frequencies q
is known.

Assumption 2. The bias d ̸= 0 and amplitude gi ̸= 0 for all
i ∈ {1, . . . , q}.

Our ultimate goal is to design an observer achieving accurate
online estimation of state X(t) as well as the disturbance ν(t).
Using the observer states, we design a controller stabilizing the
equilibrium of the closed loop system. Moreover, we aim the state
X(t) to converge to zero as t → ∞ in the presence of the output
delay and unmeasured sinusoidal disturbance.

3. Disturbance representation

Ourmain interest here is a preparation for disturbance observer
design which is presented in the next section. Firstly, we employ
a filter introduced in Krstic and Smyshlyaev (2008) for systems
under no disturbance effect. However, because of the unknown
disturbance in our system, we show that the error between the
system states and the filter states is driven by unknown sinusoidal
terms. Main motivation of obtaining this error is to use it in distur-
bance representation and then, disturbance parametrization.

Inspiring (Krstic & Smyshlyaev, 2008),wepropose the following
filter

˙̂Xd(t) = AX̂d(t) + BU(t) + eADL(Y (t) − ŷd(0, t)), (10)

∂t ŷd(x, t) = ∂xŷd(x, t) + CeAxL
(
Y (t) − ŷd(0, t)

)
, (11)

ŷd(D, t) = CX̂d(t), (12)

where L is chosen such that A− LC is Hurwitz. Since the pair (A, C)
is observable, there exists an L such that this condition is satisfied.
The error is given as follows,

X̃d(t) = X̂d(t) − X(t), (13)
˙̃Xd(t) = AX̃d − eADLỹd(0, t) − Bν(t), (14)

∂t ỹd(x, t) = ∂xỹd(x, t) − CeAxLỹd(0, t), (15)

∂t ỹd(D, t) = CX̃d(t). (16)

The following transformation

w̃(x, t) = ỹd(x, t) − CeA(x−D)X̃d(t) (17)

transforms (13), (14) into the form of
˙̃Xd(t) = Aaug X̃d(t) − eADLw̃(0, t) − Bν(t), (18)

∂tw̃(x, t) = ∂xw̃(x, t) + CeA(x−D)Bν(t), (19)
w̃(D, t) = 0, (20)

where

Aaug = A − eADLCe−AD. (21)

By using similarity transformation eAD and noting that A − LC is
Hurwitz, it can be proved that Aaug is Hurwitz.

If there is no disturbance in the system as it is shown in Krstic
and Smyshlyaev (2008), the error X̃d(t) converges to 0 as t → ∞.
However, X̃d(t) is driven by ν(t) and w̃(0, t) as seen in (18). In
Lemma 1, we show that w̃(0, t) can be expressed as a sum of
sinusoidal signals whose frequencies are same as ν(t).
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