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a b s t r a c t

This paper is concernedwith reduction of the order of finite-dimensional stabilizing controllers for a class
of distributed parameter systems. Since themiddle of the 1980s, the designmethod of finite-dimensional
stabilizing controllers of Sakawa type has been generalized for a wider class of parabolic distributed
parameter systems with boundary control and/or boundary observation. The controller of Sakawa type
consists of two kinds of observers: one is an observer of Luenberger type and the other is an estimator for
residual modes. Especially, the latter is called residual mode filter (RMF), and it plays an essential role in
the design of finite-dimensional stabilizing controllers when the order of RMF is ‘‘sufficiently large’’. The
purpose of this paper is to propose the design method containing low order RMF. An approach based on
stability radius is employed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the control theory of distributed parameter systems, the
system described by the following evolution equation with output
equation has been used for a long time.

ż(t) = −Az(t) + Bu(t), t > 0, z(0) = z0, (1)

y(t) = Cz(t), t > 0, (2)

where −A is the infinitesimal generator of a C0-semigroup on a
real Hilbert space H with inner product ⟨ · , · ⟩ and norm ∥ · ∥. B :

Rm
→ H and C : H → Rp are bounded linear operators. z(t) ∈ H

is the state variable, u(t) ∈ Rm the input variable, and y(t) ∈ Rp

the output variable. For systems (1)–(2), the stabilization problem
by finite-dimensional controllers have been investigated by many
researchers (see e.g. Balas, 1988; Curtain, 1984; Curtain, 2003;
Curtain & Zwart, 1995; El Jai & Pritchard, 1988; Fuentes & Balas,
1999; Ito, 1990; Nambu, 1985; Sakawa, 1983; Sano & Kunimatsu,
1994; Schumacher, 1983 and the references therein). Generally,
when one constructs a finite-dimensional model for an infinite-
dimensional system and applies a finite-dimensional controller to
the original infinite-dimensional system, spillover phenomenon
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may occur due to the influence of unmodeled modes. Sakawa first
introduced two kinds of finite-dimensional observers for linear
diffusion systems to reduce the influence of unmodeled modes
for the closed-loop system with the finite-dimensional controller
(Sakawa, 1983). Then, Balas called one of them the residual mode
filter (RMF), and clarified that the RMF plays an essential role
for the construction of finite-dimensional stabilizing controllers
(Balas, 1988).1 Furthermore, Sano and Kunimatsu showed that
the method could be extended to infinite-dimensional systems
with Aγ -bounded output operators (Sano & Kunimatsu, 1994). In
those papers, by choosing the order of the RMF ‘‘sufficiently large’’,
the closed-loop stability was assured. Independently of Sakawa’s
work (Sakawa, 1983), Curtain gave a design method for finite-
dimensional stabilizing controllers for linear parabolic systems
with unbounded control and observation (Curtain, 1984), in which
Schumacher’s designmethod (Schumacher, 1983) for the casewith
bounded control and observation was extended to the unbounded
case. Since there was no upper bound on the order of controller in
both works (Curtain, 1984; Schumacher, 1983), they used the per-
turbation result of Weinstein–Aronszajn determinant (Kato, 1966)
tomake the controller design feasible. After that, Fuentes and Balas
applied the perturbation theory of operators to obtain the lowest
order of RMF (Fuentes & Balas, 1999). Also, in Curtain (2003),
the method of LQG-balancing was developed for model reduction
of a class of infinite-dimensional systems, and the method was
successfully applied to construct robust controllers.

1 For nonlinear distributed parameter systems, Balas also introduced nonlinear
RMFs to construct finite-dimensional stabilizing controllers (Balas, 1991).
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In this paper, we consider the problem of reducing the order of
RMFs in finite-dimensional controllers of Sakawa type, under the
assumption that the eigenvalues and eigenfunctions of the state
operator are completely known. As a technical tool,we use stability
radius theory (Chicone & Latushkin, 1999; Pritchard & Townley,
1989), and the approach is different from that of Fuentes and Balas
(1999). First of all, we survey the Sakawa’s designmethod (Sakawa,
1983) and then give themodified version using the stability radius.
But, to calculate stability radius, we need the value of H∞-norm
of a transfer function whose realization is described by infinite-
dimensional operators in a Hilbert space. From the computational
point of view, we need to prepare a family of approximate finite-
dimensional operators and then to calculate the H∞-norm of their
transfer functions. However, it is not assured that they converge
to the value of H∞-norm of the original transfer function. The
purpose of this paper is to justify the convergence and to propose
an algorithm to reduce the order of RMFs. In addition, the case
where the bounded output operator is replaced by an Aγ -bounded
output operator is discussed. Finally, we give a numerical example
to demonstrate the validity of the theory.

2. Sakawa’s design method and its modification

2.1. System description

To explain the existing result (Balas, 1988; Sakawa, 1983)
briefly for system (1)–(2), we consider the case where the operator
A is defined by

Af =

∞∑
i=1

λi⟨f , φi⟩φi, f ∈ D(A),

D(A) =

{
f ∈ H ;

∞∑
i=1

λ2i ⟨f , φi⟩
2 < +∞

}
, (3)

where {λi, i ≥ 1} is a sequence of real numbers such that λ1 <
λ2 < · · · < λi < · · · , limi→∞λi = ∞, and {φi, i ≥ 1} is a
complete orthogonal system in H . From the definition, it is clear
that the operator A is self-adjoint on H . By using Hille–Yosida’s
theorem (Engel & Nagel, 2000; Yosida, 1980), we see that −A
generates the C0-semigroup e−tA whose expression is given by
e−tAf =

∑
∞

i=1e
−λit⟨f , φi⟩φi, t ≥ 0, f ∈ H .

2.2. Partitioned system

In order to derive a finite-dimensionalmodel for system (1)–(2),
we use the orthogonal projection Pk defined by Pkf =∑k

i=1⟨f , φi⟩φi. Here, using the operators Pl and Pn (n > l), we
decompose system (1)–(2) as follows: First, we decompose the
state variable z(t) as z(t) = z1(t) + z2(t) + z3(t), where z1(t) :=

Plz(t), z2(t) := (Pn − Pl)z(t), z3(t) := (I − Pn)z(t). Then, the state
space H has the expression

H =

dim=l
PlH ⊕

dim=n−l  
(Pn − Pl)H ⊕

dim=∞  
(I − Pn)H .

Accordingly, system (1)–(2) is expressed as follows (e.g. Balas,
1988):⎧⎪⎪⎨⎪⎪⎩

ż1(t) = −A1z1(t) + B1u(t), z1(0) = Plz0,
ż2(t) = −A2z2(t) + B2u(t), z2(0) = (Pn − Pl)z0,
ż3(t) = −A3z3(t) + B3u(t), z3(0) = (I − Pn)z0,
y(t) = C1z1(t) + C2z2(t) + C3z3(t),

(4)

where A1 := PlAPl, B1 := PlB, C1 := CPl, A2 := (Pn − Pl)A(Pn − Pl),
B2 := (Pn − Pl)B, C2 := C(Pn − Pl), A3 := (I − Pn)A(I − Pn),

B3 := (I − Pn)B, C3 := C(I − Pn). In the above, the operator A3
is unbounded, whereas all the other operators are bounded.2

Hereafter, we identify the finite-dimensional Hilbert space PlH
with the Euclidean space Rl with respect to the basis {φ1, φ2, . . . ,
φl}. In this way, each element in PlH is identified with an l-
dimensional vector, and the operators A1, B1, and C1 are identified
with matrices with appropriate size. Similarly, each element in
(Pn − Pl)H is identified with an (n − l)-dimensional vector, and
the operators A2, B2, and C2 are identified with matrices with
appropriate size.

2.3. Finite-dimensional controllers with RMFs

For the decomposed system (4), we consider the finite-
dimensional system{
ż1(t) = −A1z1(t) + B1u(t),
η(t) = C1z1(t),

(5)

as a finite-dimensional model of system (1)–(2). For the model, we
set the following assumption.

Assumption 1. (i) The integer l (≥ 1) is chosen such that the eigen-
values of thematrix−A1, σ (−A1) contains all unstable eigenvalues
of the operator −A. (ii) The pair (−A1, B1) is controllable and the
pair (C1,−A1) is observable (see e.g. Zhou, Doyle, & Glover, 1997
for the definitions and the related theorems).

Remark 1. The second assumption (ii) can be relaxed as (ii′) The
pair (−A1, B1) is stabilizable and the pair (C1,−A1) is detectable.

Under (ii) of Assumption 1 (or (ii′) of Remark 1), we can choose
a matrix F1 such that −A1 − B1F1 is Hurwitz, and we can choose a
matrix G1 such that −A1 − G1C1 is Hurwitz (e.g. Zhou et al., 1997).
Here, we consider the observer-based controller⎧⎨⎩
ẇ1(t) = (−A1 − G1C1)w1(t) + G1y(t) + B1u(t),
w1(0) = w10,

u(t) = −F1w1(t).
(6)

The control law (6) works as a stabilizing controller for the finite-
dimensional model (5), however, it is not assured for the original
system (1)–(2). For that reason, we use an RMF (7) together with
the control law (6). Then, the whole controller is described as
follows (see Fig. 1):{
ẇ2(t) = −A2w2(t) + B2u(t), w2(0) = w20,

ŷ2(t) = C2w2(t),
(7)⎧⎨⎩

ẇ1(t) = (−A1 − G1C1)w1(t) + G1(y(t) − ŷ2(t))
+ B1u(t), w1(0) = w10,

u(t) = −F1w1(t).
(8)

Then, the following result is well-known.

Theorem 2 (Balas, 1988; Sakawa, 1983). Suppose that Assumption 1
is satisfied and let another integer n be chosen such that n > l. Then,
the control law consisting of (7)–(8) becomes a finite-dimensional
stabilizing controller for system (1)–(2), if the integer n is chosen
sufficiently large.

Remark 3. In Sano and Kunimatsu (1994), Theorem 2 was ex-
tended to the system whose output operator was Aγ -bounded.

2 The projections have been widely used. For example, Byrnes et al. solved the
output regulation problem for a class of infinite-dimensional systems (Byrnes,
Gilliam, & Shubov, 2003). Christofides and Daoutidis applied approximate inertial
manifolds to the stabilization problem of semilinear distributed parameter systems
(Christofides & Daoutidis, 1997).
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