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a b s t r a c t

This paper addresses the robust consensus tracking problem for a class of uncertain nonlinear fractional-
order multi-agent systems (FOMASs) under general directed topologies. More specifically, FOMASs in
the presence of heterogeneous unknown nonlinearities and external disturbances are considered in this
paper,which include the second-orderMASs as its special cases. First, we design twodistributed saturated
observers to overcome the deficiency of the traditional tracking control strategies. Second, when there
exists a dynamics leader with unknown and bounded state trajectory, a discontinuous observer-based
distributed controller with σ -modification adaptive schemes is presented to guarantee the tracking error
converges to zero asymptotically. Next, a continuous observer-based distributed controller is further
proposed, under which the consensus tracking error is uniformly ultimately bounded (UUB) and can
be reduced as small as desired. A neural network (NN), whose weights are tuned online, is used in
the designed controllers to approximate the unknown nonlinearities. Motivated by the σ -modification
adaptive method, all the proposed adaptation algorithms require only local information and allow for
robust even in the presence of heterogeneous unknown disturbances and fractional-order dynamics.
Finally, the simulation results validate the efficacy of our proposed method.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The study of coordination of MASs has attracted more and
more attention over the past decades due to its broad applica-
tions in such areas as formation flight of unmanned aerial vehi-
cles, swarming in insects, flocking in birds, and synchronization
and phase transitions in physical and chemical systems. A typical
cooperative control problem of MASs is the consensus problem,
where each agent using only local information such that all the
agents reach an agreement, i.e., achieve the sameposition, velocity,
rendezvous and attitude. Generally speaking, existing consensus
problem of MASs can be categorized into leaderless consensus
problem (Olfati-Saber & Murray, 2004) and consensus tracking
problemwhen there exists a leader for other agents (called follow-
ers) to track (Ren & Beard, 2005).
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Up to date, most of the existing results on consensus problem
of MASs assume an integer-order dynamics, such as first-order
dynamics (Chen, Chen, Xiang, Liu, & Yuan, 2009; Ren & Beard,
2005), second-order dynamics (Meng, Lin, & Ren, 2013; Yu, Zheng,
Lü, & Chen, 2013), and higher-order dynamics (Ferik, Qureshi,
& Lewis, 2014; Zhang & Frank, 2012). It is founded that many
practical coordinated behaviors of agents in complex environment
often demonstrate non-integer-order (fractional-order) dynamics,
such as vehicles moving on the top of macromolecule fluids and
porous media (Sabatier, Agrawal, & Machado, 2007), high-speed
aircraft traveling in dust storm, rain, or snow environment (Cao, Li,
Ren, & Chen, 2010) and so on. It is worth noting that the integer-
order dynamics can be regarded as a special case of the fractional-
order dynamics. As we known, there is few report in the previous
studies on the distributed coordination of MASs with fractional-
order dynamics. The distributed coordination control problem of
linear FOMASs with directed graphs has been investigated in Cao
et al. (2010). It is indicated in Cao et al. (2010) that the conver-
gence speed of the fractional-order consensus algorithms can be
increased by adopting a varying-order fractional-order strategy.
Further, Gong (2016) has studied the fractional-order leaderless
and leader-following consensus of nonlinear FOMASs with di-
rected topologies. Recently in Gong (2017), the consensus track-
ing problem has been investigated for Lipschitz-type nonlinear
FOMASs subject to heterogeneous control gains and an unknown
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leader. In order to track the leader with second-order dynamics,
a distributed fractional-order observer with dynamics order less
than two has been designed in Yu, Li, Wen, Yu, and Cao (2017).

As is well known, we are often confronted with the case when
there exist heterogeneous uncertainties as well as the external
disturbances in practical MASs. For general MASs with unknown
nonlinearities and disturbances, the NN-based adaptive approach
is originally proposed in Hou, Cheng, and Tan (2009) to solve
the consensus problem of first-order MASs under a fixed undi-
rected graph. Shortly afterwards, such approach has been used to
address the consensus tracking problem for uncertain nonlinear
MASs with first-order integrator dynamics (Das & Lewis, 2010),
with second-order integrator dynamics (Das & Lewis, 2011), and
with high-order integrator dynamics (Ferik et al., 2014; Zhang &
Frank, 2012). Note that one limitation in Das and Lewis (2010,
2011), Ferik et al. (2014), Hou et al. (2009) and Zhang and Frank
(2012) is that the design of the consensus protocols depends on
some global or unknownknowledge, such as the Laplacianmatrix’s
eigenvalue information and the unknownnonlinear dynamics. One
of the effective approaches to overcome these shortcomings is
to adopt distributed adaptive gain updating laws. The distributed
adaptive gains updating laws for both the cases of leaderless and
leader-follower consensus of second-order Lipschitz-type nonlin-
ear MASs with undirected topologies have been designed in Yu
et al. (2013). In Yoo (2013), the containment control problem of
uncertain nonlinear strict-feedback systems has been considered
by applying distributed adaptive gain control algorithm. Some
fully distributed consensus algorithms have been given in Mei,
Ren, and Chen (2016) to address the consensus problem for a
group of heterogeneous Lipschitz-type second-order MASs under
general directed topologies. However, there is no paper to design
fully distributed algorithms for solving the consensus problem of
FOMASs with general nonlinear dynamics and general directed
network topologies.

The above mentioned works and observation inspire us to con-
sider the tracking problem for FOMASs subject to heterogeneous
unknown nonlinearities and external disturbances over a general
directed graph by designing fully distributed algorithms. Such
problem is nontrivial and rather challenging due to the following
reasons. At first, due to the existence of heterogeneous unknown
nonlinearities as well as the unknown external disturbances in the
nonlinear systems, it is desirable first to identify the heterogeneous
unknown nonlinearities and then try best to compensate them
in the designed controller. On the other hand, since the loss of
symmetry in the directed network and the well-known Leibniz
rule for fractional derivatives is invalid, how to construct a suitable
Lyapunov function for analyzing the stability of nonlinear FOMASs
is very challenging. Besides, it should be noted that the problem
about designing fully distributed algorithms is much more chal-
lenging.

In this paper, by applying the fractional Lyapunov direct
method, a discontinuous and continuous observed-based fully
distributed algorithms are provided to address the robust con-
sensus tracking problem for uncertain nonlinear FOMASs, respec-
tively. The contributions of this paper are mainly threefold. (i) This
paper extends the robust consensus tracking problem to the
case where each agent has heterogeneous unknown nonlinear
fractional-order dynamics and the fixed topology contains a di-
rected spanning tree, which takes the second-order MASs in Das
and Lewis (2011), Meng et al. (2013) and Yu et al. (2013) as its
special cases. (ii) Unlike the existing adaptive algorithms in Das
and Lewis (2010, 2011), Gong (2016), Hou et al. (2009), Meng
et al. (2013), Yoo (2013), Yu et al. (2013) and Zhang and Frank
(2012), the proposed discontinuous observed-based adaptive algo-
rithm with σ -modification schemes here not only guarantees the
tracking error converges to zero asymptotically, but also allows for

robust even in the presence of heterogeneous unknown nonlinear
fractional-order dynamics. (iii) Both of the proposed discontinuous
and continuous robust adaptive algorithms can be implemented
in a fully distributed fashion without requiring any global and
unknown information. Note that in Yu et al. (2013) the design of
fully distributed algorithms for second-order MASs with general
directed topologies is clarified as an unsolved challenging problem.

Notations: Throughout the paper, let R, R+, and Z+ denote, re-
spectively, the sets of all real numbers, nonnegative real numbers,
andpositive integers. LetRm×n denote the set ofm×n realmatrices,
andRm be them-dimensional Euclidean space. Let In ∈ Rn×n (On ∈

Rn×n) be the n × n identity (zero) matrix, and 1n ∈ Rn (0n ∈ Rn)
denote the n × 1 column vector of all ones (zeros). Denote by
diag(d1, . . . , dn) ∈ Rn×n a diagonal matrix with diagonal entries
d1 to dn, and IN = {1, . . . ,N}. For a vector x = [x1, . . . , xn]T ∈ Rn,

denote ∥x∥∞ = maxi=1,...,n|xi|, ∥x∥ =
√
xT x, and ∥x∥1 =

∑n
i=1|xi|.

Let ⊗ be the Kronecker product, tr(·) be the trace of a matrix, and
λmin(·) (λmax(·)) be the minimum (maximal) nonzero eigenvalue of
a real symmetric square matrix.

2. Preliminaries and problem statement

2.1. Caputo fractional operators and Mittag-Leffler function

Some basic definitions and properties of fractional operators
and Mittag-Leffler function are presented below in this section.

Definition 1 (Riemann–Liouville Integral Podlubny, 1999). The
Riemann–Liouville fractional integral of function f ∈ Cn(R+,R) is
defined as follows:

Iqf (t) = Iq[f (·)](t) =

∫ t

0

(t − τ )q−1

Γ (q)
f (τ )dτ ,

where q ∈ (n − 1, n], n ∈ Z+, t ∈ R+, and Γ (·) is the well-known
Gamma function, defined as Γ (z) =

∫
∞

0 tz−1e−tdt .

Definition 2 (Caputo Derivative Podlubny, 1999). The Caputo frac-
tional derivative of function f ∈ Cn(R+,R) is defined as follows:

Dqf (t) = In−qf (n)(t) =

∫ t

0

(t − τ )n−q−1

Γ (n − q)
f (n)(τ )dτ ,

where q ∈ (n − 1, n], n ∈ Z+, and t ∈ R+.

In the Caputo settings, it is given by the following properties
(Podlubny, 1999).

Property 1. For any two continuous functions h(t), g(t) ∈

Cn(R+,R), then Dq (ah(t) + bg(t)) = aDqh(t) + bDqg(t) and Dqc =

0 hold, where a, b, and c are any three constants.

Property 2. Let f (t) ∈ Cn(R+,R), then for all t ∈ R+,

IqDqf (t) = f (t) −

n−1∑
k=0

f (k)(0)
k!

tk,

where q ∈ (n − 1, n], n ∈ Z+. In particular, if q ∈ (0, 1], then
IqDqf (t) = f (t) − f (0).

Definition 3 (Mittag-Leffler Function Podlubny, 1999). The Mittag-
Leffler function with two positive parameter a and b is defined as
follows:

Ea,b(z) =

∞∑
k=1

zk

Γ (ka + b)
,

where z is a complex number. Let Ea,1(z) = Ea(z) as b = 1, further,
E1,1(z) = ez .
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