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a b s t r a c t

We consider discrete-time, infinite-horizon optimal control problems with discounted rewards. The
value function must be Lipschitz continuous over action (input) sequences, the actions are in a scalar
interval, while the dynamics and rewards can be nonlinear/nonquadratic. Exploiting ideas from artificial
intelligence, we propose two optimistic planning methods that perform an adaptive-horizon search over
the infinite-dimensional space of action sequences. The first method optimistically refines regions with
the largest upper bound on the optimal value, using the Lipschitz constant to find the bounds. The second
method simultaneously refines all potentially optimistic regions, without explicitly using the bounds.
Our analysis proves convergence rates to the global infinite-horizon optimum for both algorithms, as a
function of computation invested and of a measure of problem complexity. It turns out that the second,
simultaneous algorithmworks nearly aswell as the first, despite not needing to know the (usually difficult
to find) Lipschitz constant.Weprovide simulations showing the algorithms are useful in practice, compare
them with value iteration and model predictive control, and give a real-time example.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We consider optimal control problems that require maximiz-
ing a discounted sum of rewards (the value), along an infinitely
long discrete-time trajectory of the system. Such problems are
encountered in automatic control (Kirk, 2004) as well as in many
other fields, including artificial intelligence (AI) (Szepesvári, 2010),
operations research, medicine, economics, etc. When the system
and reward function have a general form, the problem must be
solved approximately with numerical algorithms. A popular class
of techniques is approximate dynamic programming (Bertsekas,
2012), which computes offline a near-optimal value function and
a state feedback control. Because it searches for a global solution,
the complexity of dynamic programming usually grows fast with
the state dimensionality (Bertsekas, 2012).

We focus instead on receding-horizon algorithms that remove
the direct dependence on the state space size, at the cost of
solving a new problem at each step, locally for the current state
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of the system. A sequence of actions (inputs) is obtained, the
initial action of this sequence is applied, and the procedure is
repeated online for subsequent states. In automatic control, this
is called receding-horizon model predictive control (MPC) (Grüne
& Pannek, 2016), while in AI it is called online planning (La Valle,
2006). Note that computation still grows with the action space
size and with the search horizon. We search over the space of
infinitely long sequences, using the optimistic planning (OP) class
of algorithms (Munos, 2014). OP methods originate in AI and
perform a branch-and-bound search over the sequences, refining
the region with the best upper bound on the value — hence the
‘‘optimistic’’ label. The main strengths of OP are the generality of
the dynamics and rewards addressed, and a tight relation between
computation and near-optimality, obtained using ideas from ban-
dit theory and reinforcement learning.ManyOP variants have been
proposed for discrete actions, e.g. by Hren and Munos (2008), Koc-
sis and Szepesvári (2006) andMáthé, Buşoniu,Munos, and Schutter
(2014). Our aim in this paper is to address instead continuous
actions, since they are essential in control.

Specifically, we propose two optimistic planning algorithms with
continuous actions (OPC) that work in systems with general non-
linear dynamics and scalar, compact actions. The methods itera-
tively split the infinite-dimensional hyperrectangle of continuous-
action sequences into smaller hyperrectangles (boxes), leading
to an adaptive search horizon. They rely on a central Lipschitz
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property of the value function over action sequences, which is
satisfied e.g. when the dynamics and rewards are Lipschitz, with
a small enough constant for the dynamics. Using this property, an
upper bound on the optimal value is derived using the rewards and
the box size. This leads to the first algorithm, which optimistically
selects for splitting the box with the largest upper bound, and so it
is called simply OPC. An essential insight is that each dimension k
contributes to the bound with weight γ k, where γ is the discount
factor, and this is used to select which box dimension to split. We
characterize the rate atwhich the box size shrinkswith the number
of splits, and define a measure of problem complexity, in the form
of the branching factor of an associated tree (Hren &Munos, 2008).
Using these concepts, we derive an overall convergence rate of the
algorithm to the global infinite-horizon optimum as a function of
computation, measured by the number of transitions simulated.

A limitation of this first OPC method is that it requires the Lips-
chitz constant. In practice the constant is difficult to find so it must
be treated as a tuning parameter, which is easy to overestimate
(making the algorithm conservative) or underestimate (invalidat-
ing the guarantees). So we also propose a second algorithm that
expands all potentially optimistic boxes, using only the knowledge
that boxes that have been split more times have smaller diameters.
This algorithm is called simultaneous OPC (SOPC). We analyze SOPC
and show that it has nearly the same convergence rate as OPC, even
though it does not need to know the value function smoothness.
SOPC relies on a different tuning parameter than the Lipschitz
constant, which can however be tuned much more robustly. Sim-
ulation results illustrate that SOPC outperforms OPC, and is also
better than competing continuous-action planners and baseline
dynamic programming and MPC solutions. We provide real-time
control results with SOPC.

In contrast tomuch of thework in nonlinearMPC (Grüne & Pan-
nek, 2016),which uses a fixed finite horizon, OPC and SOPC directly
explore the space of infinite-horizon solutions, and therefore our
near-optimality bounds and convergence rates are with respect to
the global, infinite-horizon optimum. E.g. the closest work to ours
is the optimistic MPC method of Xu, van den Boom, and Schutter
(2016), which only works for small fixed control horizons (and
max-plus systems). OPC and SOPC instead adaptively increase the
horizon as much as the computation allows. Moreover, typical
MPC methods are derivative-based, while our methods only rely
on Lipschitz values, so at the cost of more computation, they can
handle dynamics and rewards that are nondifferentiable at some
discrete points (on a set of measure zero).

In planning, several other optimistic methods have been pro-
posed for continuous actions, but without an analysis; to our
knowledge OPC and SOPC are the first to guarantee a conver-
gence rate. Lipschitz planning (LP) (Hren, 2012) uses a similar
upper bound but lacks the insight on the impact γ k, so it uses
a heuristic rule to choose which dimension to split. Our earlier
method called simultaneous optimistic optimization for planning
(SOOP) (Buşoniu, Daniels, Munos, & Babuška, 2013) is similar to
SOPC in that it expands many boxes at once, but uses a heuristic
for selecting these boxes, which turns out to be worse in our
simulations. Other continuous-action planners only optimize over
finite horizons, e.g. HOOT (Mansley, Weinstein, & Littman, 2011)
or sequential planning (Hren, 2012).

Our new planners apply the principle of optimistic optimization
(OO) (Munos, 2011) to control, while the analysis of OO does
not work because its assumptions are not satisfied for infinite-
horizon continuous-input problems. Thus, we must provide novel
analysis adapted to this setting. The present paper is an extended
and revised version of Buşoniu, Páll, and Munos (2016), and the
material on OPC largely originates in that paper. Themajor novelty
compared to Buşoniu et al. (2016) is the SOPCmethod, with almost
as good analytical guarantees and much better practical perfor-
mance than OPC. Even for OPC, we provide here extra insight that

due to space limits was not available in Buşoniu et al. (2016). The
simulations are extended and the real-time results are new.

Next, Section 2 formalizes the problem and Section 3 describes
OPC and SOPC. Section 4 analyzes the two algorithms, while Sec-
tion 5 provides numerical results. Section 6 concludes the paper.
Supplementary material is available at http://busoniu.net/files/
papers/sopc_suppl.pdf.

2. Problem statement

We consider an optimal control problem for a discrete-time
nonlinear system xk+1 = f (xk, uk), where x ∈ X ⊆ Rp, u ∈ U ,
and U will be described in our main assumption below. A function
ρ : X × U → R assigns a numerical reward rk = ρ(xk, uk) to each
state–action pair. Under a fixed initial state x0, define an infinitely-
long sequence of actions u∞ = (u0, u1, . . .) and its infinite-horizon
discounted value:

v(u∞) =

∞∑
k=0

γ kρ(xk, uk) (1)

where γ ∈ (0, 1) is the discount factor, and xk+1 = f (xk, uk) ∀k ≥

0. The objective is to find (a near-optimal approximation of) the
optimal value v∗

:= supu∞
v(u∞) and an action sequence that

achieves this (near-optimal) value. Very general conditions that
ensure the existence of optimal sequences are provided e.g. by
Bertsekas and Shreve (1978).

We impose some assumptions that allow us to derive efficient
algorithms.

Assumption 1. The following conditions hold.

(i) The rewards are bounded in [0, 1].
(ii) The action is a real scalar, bounded in the unit interval, so that

U = [0, 1].

The main role of reward boundedness 1(i), together with dis-
counting, is to ensure that for any sequence the values in (1) are
bounded to [0, 1

1−γ
]. Our planning algorithms and analysis rely

on this property. Note that many other works in control use dis-
counting, e.g. Filar, Gaitsgory, andHaurie (2001) andKatsikopoulos
and Engelbrecht (2003). Bounded costs are typical in AI methods
for optimal control, such as reinforcement learning (Szepesvári,
2010). One way to achieve boundedness is by saturating a possibly
unbounded original reward function, which changes the optimal
solution but is often sufficient in practice. Another example is
when physical limitations in the system aremodeled by saturating
the states and actions, from which a reward bound follows.

The scalar action from Assumption 1(ii) could in principle be
generalized to multiple dimensions; however, computation would
grow very fast with action dimensionality, so in practice this will
not work for more than a few dimensions. (In the supplementary
material, we briefly explain and empirically test such an extension
for two dimensions.) The compact nature of U is fundamental,
since our algorithm numerically refines this action space. In both
Assumptions 1(i) and (ii), the unit interval is taken only for conve-
nience, and can be achieved by rescaling any bounded interval.

A crucial requirement is a Lipschitz property of v with respect
to its argument u∞, ‘‘one-sided’’ around optimal sequences.

Assumption 2. There exists Lv > 0 so that for any optimal
sequence u∗

∞
and any other sequence u∞ ∈ U∞:

v(u∗

∞
) − v(u∞) ≤ Lv

∞∑
k=0

γ k
⏐⏐u∗

k − uk
⏐⏐ . (2)
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