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a b s t r a c t

In this paper, we extend convergence conditions for the parameter adaptation algorithm, used in discrete-
time recursive identification schemes, or in adaptive control. Whereas the classical stability analysis of
this algorithm consists in checking the strictly real positiveness of an associated transfer function, we
demonstrate that convergence can be obtained even when this condition is not fulfilled, under some
assumptions on the algorithm forgetting factors. These results regarding both deterministic and stochastic
contexts are obtained by analyzing convergence with a prescribed degree of stability.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The parameter adaptation algorithm (PAA) described in Landau,
Lozano, Saad, and Karimi (2011) is a cornerstone in adaptive con-
trol. It provides an on-line parameter estimation of a discrete-time
system and is extensively used in recursive identification schemes.
The issue of PAA convergence analysis has been addressed for a
long time (Landau, 1965) by considering that this algorithm can
always be represented as an equivalent closed-loop including a
linear time-varying (LTV) feedback system in interaction with a
discrete feedforward linear time-invariant (LTI) system. Hypersta-
bility theory imposes the strictly real positiveness condition of
the transfer function linked to the feedforward LTI system and,
as this condition is only sufficient, in some cases when it is not
fulfilled, the PAA convergence can be nevertheless observed. The
purpose of this paper is to provide less restrictive convergence
conditions for the PAA. We show that under classical assumptions
on the algorithm forgetting factors, such as those considered in,
e.g., Lozano (1983), the algorithm stability can be proved even if the
LTI system strictly real positiveness is not satisfied. These results
provide new analysis tools able to cope, in particular, with an LTI
system transfer function having poles on the unit circle. The here-
after developments are based upon controlled LTI systems with a
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prescribed degree of stability that have been studied in Anderson
andMoore (1971) and Bourlès (1987) in the continuous-time case,
and in Bourlès, Joannic, and Mercier (1990) in the discrete-time-
case. Likewise Kalman filters with a prescribed degree of stability
have been developed in Anderson and Moore (1979). Since the
PAA is a variant of the Kalman filter, we combine these approaches
in the sequel with developments achieved in a deterministic con-
text (Landau & Silveira, 1979) and in a stochastic context (Landau,
1982) to obtain these generalized convergence conditions.

2. Deterministic context

In the beginning of this section, we refer systematically to Lan-
dau et al. (2011) (pp.102–103) for the description of the PAA, and in
particular we reuse the same notation. The PAA aims at making as
close to zero as possible a prediction (or adaptation) error between
the output of the system to be identified and an adjustable model
output. Let us denote by:

ν(t + 1) : The a-posteriori adaptation error (scalar),
φ(t): The observation vector (size (nφ, 1)),
θ : The parameters vector to be estimated (size (nφ, 1)),
θ̂ (t): The current estimated parameters vector (size (nφ, 1)).
We consider systems for which the a-posteriori error is given

by:

ν(t + 1) = H(q−1)(θ − θ̂ (t + 1))Tφ(t). (1)

In this expression H(q−1) is the operator associated with the (bi-
causal) transfer function H(z−1), which is a ratio of two monic
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polynomials. The PAA equations are:

θ̂ (t + 1) = θ̂ (t) + F (t)φ(t)ε(t + 1) (2)

F−1(t + 1) = λ1F−1(t) + λ2φ(t)φT (t) (3)

F (t) is the adaptation gain (positive definite matrix), 0 < λ1 ≤

1, 0 ≤ λ2 < 2 are the forgetting factors. A sufficient convergence
condition for the PAA, is that the transfer function:

H(z−1) −
λ2

2
be strictly positive real. From Eqs. (1), (2), (3) an equivalent closed-
loop can be drawn. For this purpose let us denote by: θ̃ (t) =

θ̂ (t) − θ : the parameters vector error (size (nφ, 1)),
u(t + 1) = −φT (t)θ̃ (t + 1): the input of H(q−1) (scalar),
y(t + 1) = ν(t + 1): the output of H(q−1) (scalar),
ũ(t + 1) = ν(t + 1): the associated LTV system input,
ỹ(t + 1) = φT (t)θ̃ (t + 1): the LTV system output (scalar),
x̃(t) = θ̃ (t): the LTV system state vector (size (nφ, 1)),
x(t): the state vector of the operator H(q−1) (size (n, 1)).
The LTV system state space equations are:

x̃(t + 1) = Ã(t)x̃(t) + B̃(t)ũ(t + 1) (4a)

ỹ(t + 1) = C̃(t)x̃(t) + D̃(t)ũ(t + 1). (4b)

With:
Ã(t) = Inφ

,
B̃(t) = F (t)φ(t), (size (nφ, 1)),
C̃(t) = φT (t), (size (1, nφ)),
D̃(t) = φT (t)F (t)φ(t), (scalar).
In what follows, a controllable and observable linear system is

considered as an operator associating the output to the input, with
zero initial conditions. The LTI system state space equations are
written:

x(t + 1) = Ax(t) + Bu(t) (5a)
y(t) = Cx(t) + Du(t). (5b)

With A of size (n, n),
B of size (n, 1),
C of size (1, n)
D a scalar.
The equivalent closed-loop is represented in Fig. 1. For any

signal s = {s(t)} (determinist or stochastic), denote by sρ the signal
{ρts(t)}, ρ ≥ 1. Considering the signal y(t) = H(q−1)u(t), the
relation between yρ(t) and uρ(t) is yρ(t) = Hρ(q−1)uρ(t), with
Hρ(q−1) = H(ρq−1), (Bourlès et al., 1990). An equivalent closed-
loop canbederived from the loop represented in Fig. 1, inwhich the
feedback LTV system input and output are now ũρ(t +1), ỹρ(t +1),
and the feedforward LTI system input and output correspond to
uρ(t) and yρ(t). The state space equations of the so-called ρ-LTV
system are given by:

x̃ρ(t + 1) = Ãρ(t)x̃ρ(t) + B̃ρ(t)ũρ(t + 1) (6a)

ỹρ(t + 1) = C̃ρ(t)x̃ρ(t) + D̃ρ(t)ũρ(t + 1). (6b)

With:
Ãρ = ρInφ

,

B̃ρ = F (t)φ(t) (size (nφ, 1)),
C̃ρ(t) = ρφT (t) (size (1, nφ)),
D̃ρ = φT (t)F (t)φ(t) (scalar).
Fig. 2 describes the equivalent PAA closed-loop, with ρ-signals.
Imposing that ỹρ(t) and ũρ(t) converge towards 0 is equivalent

to impose a degree of stability ρ to the classical closed-loop in
Fig. 1.

Fig. 1. Classical PAA closed-loop.

Fig. 2. Equivalent PAA closed-loop with ρ-signals.

Theorem 1. Consider the PAA algorithm given by (1), (2), and (3).
Assume that there exists ρ ≥ 1 such that the following conditions
hold:

(1) λ1 ≤ 2 − ρ2, 0 ≤ λ2 < 2
(2) The transfer function H(ρz−1) −

λ2
2 is strictly positive real.

Then one has:

lim
t→∞

νρ(t + 1) = 0 (7)

lim
t→∞

[
θ − θ̂ (t + 1)

]T
φ(t)ρt

= 0 (8)

lim
t→∞

[
ρ

(
θ − θ̂ (t + 1)

)
−

(
θ − θ̂ (t)

)]T F−1(t) · · ·

· · ·
[
ρ

(
θ − θ̂ (t + 1)

)
−

(
θ − θ̂ (t)

)]
ρ2t

= 0 (9)[̂
θ (t) − θ

]T F−1(t)
[̂
θ (t) − θ

]
ρ2t < const < ∞. (10)

Proof. Since the case ρ = λ1 = 1 has already been treated in
(Landau et al., 2011, Thm. 3.1) we assume ρ > 1. The transfer
function H(ρz−1

−
λ2
2 is strictly real positive if and only if (by

definition) H(ρz−1) belongs to the class L(Λ), as defined in Landau
et al. (2011), p. 556. The feedback loop using ρ-signals is stable
and ỹρ(t), ũρ(t) converge towards 0 if the LTV system (6), belongs
to the class N(Γ ), as defined in Landau et al. (2011), p. 558, with
Γ = λ2. According to Lemma C.7 of the same reference, the system
(6) belongs to the class N(Γ ) if there exist three sequences of non-
negative definite symmetric matrices {P(t)}, {R(t)}, {Q (t)} and a
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