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a b s t r a c t

This paper considers the problem of finite-time tracking control for a class of nonlinear systems. A novel
finite-time command filtered backstepping approach is proposed by using the new virtual control signals
and the modified error compensation signals. The new design technique not only has the advantages of
the conventional command-filtered backstepping control, but also guarantees the finite-time convergent
property. Two examples are included to show the effectiveness of the obtained theoretical results.
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1. Introduction

Backstepping control is one of the most commonly used meth-
ods to deal with nonlinear systems (Bribiesca-Argomedo & Krstic,
2015; Kanchanaharuthai & Mujjalinvimut, 2018; Khalil, 2002;
Krstic, Kanellakopoulos, & Kokotovic, 1995), in which the states
are used as virtual control signals in control law design, and the
virtual signals and their derivatives are required in each step of
the design process. However, the backstepping design procedure
has the problemof ‘‘explosion of complexity’’ (Bribiesca-Argomedo
& Krstic, 2015; Swaroop, Hedrick, Yip, & Gerdes, 2000; Zhang
& Ge, 2008) caused by repeated differentiations of the virtual
control signals, especially for systems with high-order dynamics.
To address the above issue, the dynamic surface control (DSC)
approaches were first proposed, in which the first-order filters
were introduced in the backstepping design, and the adaptive
fuzzy technique was further combined with DSC to eliminate the
influence of uncertain nonlinearities (Sun, Li, & Ren, 2015; Swaroop
et al., 2000; Tong, Li, Feng, & Li, 2011; Tong, Sui, & Li, 2015; Yu, Shi,
Dong, Chen, & Lin, 2015; Zhang&Ge, 2008). But how to compensate
the errors caused by the first-order filters was not considered in
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Sun et al. (2015), Swaroop et al. (2000), Tong et al. (2011), Tong
et al. (2015), Yu, Shi, Dong, Chen et al. (2015) and Zhang and Ge
(2008), which influence the control quality (Yu, Shi, Dong, & Yu,
2015). The command-filtered backstepping is another modified
backstepping control method, in which the command filters are
introduced to approximate the derivative of the virtual (Dong,
Farrell, Polycarpou, Djapic, & Sharma, 2012; Farrell, Polycarpou,
Sharma, & Dong, 2009), and the errors caused by the command
filters can be reduced with the combination of compensation sig-
nals. It should be pointed out that the conventional backstepping
control laws in Khalil (2002), Krstic et al. (1995) and the modified
backstepping control laws inDong et al. (2012), Farrell et al. (2009),
Sun et al. (2015), Swaroop et al. (2000), Tong et al. (2011), Tong
et al. (2015), Yu, Shi, Dong, Chen et al. (2015); Yu, Shi, Dong, and
Yu (2015) and Zhang and Ge (2008) are all asymptotically stable
control laws, which means that the closed-loop convergence is
achieved as time goes to infinity.

Compared with the asymptotic control approach, the finite-
time control technique has many advantages such as faster re-
sponse, higher tracking precision and better disturbance-rejection
ability (Bhat & Bernstein, 2000; Du, Li, & Qian, 2011; Yu, Yu, Shirin-
zadeh, & Man, 2005). Therefore, many finite-time control methods
have been developed for various nonlinear systems during the past
few years (Gao, Wu, & Zhang, 2015; Hou, Zhang, Deng, & Duan,
2016; Huang, Lin, & Yang, 2005; Lu & Xia, 2013; Qian & Lin, 2002;
Shen & Huang, 2012; Zhang, Feng, & Sun, 2012; Zhao & Jia, 2015).
For example, theworks inGao et al. (2015), Hou et al. (2016), Huang
et al. (2005), Qian and Lin (2002), Shen and Huang (2012) and
Zhang et al. (2012) studied the finite-time stabilization problem
of high-order nonlinear systems by a power integrator technique.
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In many practical applications, the tracking problem is required
to be solved, and the finite-time tracking is more desirable (Lu &
Xia, 2013; Zhao & Jia, 2015). Note that the command-filtered back-
stepping is an effective strategy to deal with the tracking problems
of high-order nonlinear systems, but the finite-time convergence
cannot be achieved by employing the existing control frameworks.
Then a natural question is: how to extend the command-filtered
backstepping control such that the finite-time tracking issue can be
resolved for high-order nonlinear systems? This is the motivation
of our work in this paper.

In this paper, we will study the problem of finite-time tracking
control for high-order nonlinear systems by a new finite-time
command filtered backstepping approach. Comparedwith the con-
ventional command-filtered backstepping control in Dong et al.
(2012), Farrell et al. (2009), Yu, Shi, Dong, and Yu (2015), the main
contributions are summarized as follows:

(1) At each step of the backstepping, the finite-time filter is
introduced to replace the command filter with asymptotic conver-
gence rate in Dong et al. (2012), Farrell et al. (2009) and Yu, Shi,
Dong, and Yu (2015), which can guarantee that the output of filter
approximates the derivative of the virtual control;

(2) Compared with Dong et al. (2012), Farrell et al. (2009), Yu,
Shi, Dong, and Yu (2015), the new finite-time error compensation
mechanism is first proposed, which can timely reduce the filtering
errors than that in Dong et al. (2012), Farrell et al. (2009) and Yu,
Shi, Dong, and Yu (2015);

(3) The finite-time virtual control signals can guarantee the
closed-loop systems with faster response and higher tracking pre-
cision than the virtual control signals proposed in Dong et al.
(2012), Farrell et al. (2009) and Yu, Shi, Dong, and Yu (2015) by
choosing proper control parameters.

The remainder of this paper is organized as follows. The prob-
lem formulation and preliminaries are given in Section 2. The
control law design is presented in Section 3. Two examples are
given in Section 4 to verify the effectiveness and advantages of
the proposed new design method, and the paper is concluded by
Section 5.

2. Problem formulation and preliminaries

Consider the following class of nth order SISO nonlinear sys-
tems:
ẋ1 = f1 (x̄1) + g1 (x̄1) x2
ẋ2 = f2 (x̄2) + g2 (x̄2) x3

...

ẋn = fn (x) + gn (x) u
y = x1

(1)

where x = [x1, x2, . . . , xn]T ∈ Rn is the state vector with x (0) = x0
and x̄i = [x1, x2, . . . , xi]T , y is the systemoutput andu is the control
signal. The functions fi (·) and gi (·) (i = 1, 2, . . . , n) are assumed
to be known. Denote x1d as the desired tracking signal and its first
time derivative is assumed to be a smooth, bounded and known
function. The control objective of this paper is to construct the
control law u such that the output x1 tracks the reference signal
x1d from any initial conditions in finite-time and all the signals and
states of the closed-loop system are bounded in finite-time. The
following assumption is imposed on system (1).

Assumption 1. There exists an open set Ωd ⊂ Rn that includes
the origin and the initial condition x0. For system (1), for i =

1, . . . , n−1, p = 1, . . . , (n− i): (1) f (p)i (·) and g (p)
i (·) are bounded in

closed set Ω̄d; (2) fn(·), gn(·) and their first-order partial derivatives
are bounded in closed set Ω̄d; and (3) there exist known positive
constants η and ρ such that η < |gi| < ρ.

By Assumption 1, both functions fi and gi are each Lipschitz on
Ω̄d. Let us recall the following results in order to develop our main
results in sequel.

Lemma 1 (Bhat & Bernstein, 2000). Suppose V (x) is a C1 smooth
positive-definite function (defined on U ⊂ Rn) and V̇ (x) + λV α(x)
is a negative semi-definite function on U ⊂ Rn and α ∈ (0, 1), then
there exists an area U0 ⊂ Rn such that any V (x) which starts from
U0 ⊂ Rn can reach V (x) ≡ 0 in finite time. Moreover, if Tr is the time
needed to reach V (x) ≡ 0, then Tr ≤

V1−α (x0)
λ(1−α) where V (x0) is the initial

value of V (x).

Lemma2 (Yu et al., 2005). For any real numbersλ1 > 0, λ2 > 0, 0 <

γ < 1, an extended Lyapunov condition of finite-time stability can be
given V̇ (x) + λ1V (x) + λ2V γ (x) ≤ 0 where the settling time can be
estimated by Tr ≤ t0 +

1
λ1(1−γ ) ln

λ1V1−γ (t0)+λ2
λ2

.

Note that Lemmas 1–2 provide a general Lyapunov condition of
finite-time stability, which cannot be always guaranteed under the
designed control law, and the state will be driven into the bounded
region in finite-time, which is defined as practical finite-time sta-
bility in Zhu, Xia, and Fu (2011). It should be pointed out that Zhu
et al. (2011) presented the Lyapunov condition of practical finite-
time stability under Lemma 1. We will further give the Lyapunov
condition of practical finite-time stability under Lemma 2 in this
paper. Based on Lemma 2, we then have the following result.

Corollary 1. Consider the system ẋ = f (x). If there exist continuous
function V (x), scalars λ1 > 0, λ2 > 0, 0 < γ < 1, 0 < η < ∞

such that V̇ (x) ≤ −λ1V (x) − λ2V γ (x) + η, then the trajectory of
system ẋ = f (x) is practical finite-time stable, and the residual set of
the solution of system ẋ = f (x) is given by

{ lim
t→Tr

|V (x) ≤ min{
η

(1 − θ0)λ1
, (

η

(1 − θ0)λ2
)
1
γ }}

where θ0 satisfies 0 < θ0 < 1. The setting time is bounded as

Tr ≤ max{t0 +
1

θ0λ1(1 − γ )
ln

θ0λ1V 1−γ (t0) + λ2

λ2
,

t0 +
1

λ1(1 − γ )
ln

λ1V 1−γ (t0) + θ0λ2

θ0λ2
}.

Proof. Note that there exists a scalar 0 < θ0 < 1 such that the
inequality V̇ (x) ≤ −λ1V (x) − λ2V γ (x) + η can be expressed as

V̇ (x) ≤ −θ0λ1V (x) − (1 − θ0)λ1V (x) − λ2V γ (x) + η (2)

or

V̇ (x) ≤ −λ1V (x) − θ0λ2V γ (x) − (1 − θ0)λ2V γ (x) + η. (3)

From (2), we have

V̇ (x) ≤ −θ0λ1V (x) − λ2V γ (x)

ifV (x) >
η

(1−θ0)λ1
. Then, by Lemma2andZhu et al. (2011), it follows

that the decrease of V (x) in finite time will drive x into the region

x ∈ {V (x) ≤
η

(1 − θ0)λ1
}. (4)

The time needed to arrive (4) is given as

Tr ≤ t0 +
1

θ0λ1(1 − γ )
ln

θ0λ1V 1−γ (t0) + λ2

λ2
.

From (3), it can be seen that

V̇ (x) ≤ −λ1V (x) − θ0λ2V γ (x)
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