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a b s t r a c t

A Lyapunov–Krasovskii Functional (LKF)-based dynamic quantization strategywas innovated in the paper
‘Dynamic quantization of uncertain linear networked control systems’. Though effective and comprehen-
sive, it is conservative in terms of converging speed and the upper bound of the system states. This paper
aims at improving the zooming-in algorithm to bring faster convergence of the closed-loop system. A
more accurate upper bound for the system states is also obtained with smaller initial value and faster
decay rate. The effectiveness of the improvements is illustrated by simulation.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Networked control systems (NCSs) have become a popular field
of study in recent years. The central concerns are time delay,
quantization and packet dropout that exist in data transmission of
NCSs, and linear matrix inequality (LMI)-based stability criteria for
NCSs were derived in Han, Liu, and Yang (2015), Yang, Shi, Liu, and
Gao (2011) and Yue, Tian, and Han (2013).

Since quantization errors prevent quantized systems from
achieving asymptotical convergence, dynamic quantizers with
zooming schemes were studied in Brockett and Liberzon (2000)
and Liberzon (2003, 2006), where the zoom variables decrease
alongwith the shrinking of the system states. The zooming scheme
was applied to stabilize NCSs with packet losses in Yang, Xu, and
Zhang (2016) and planar nonlinear systems with quantization in
Yang, Xu, Xia, and Zhang (2017) respectively. The idea of dynamic
quantization was extended to the case of Lyapunov–Krasovskii
Functional (LKF) in Liu, Fridman, and Johansson (2015), where time
delay and sampled datawere considered. The constructed dynamic
quantization strategy guarantees no saturation for the quantizers,
and an exponentially decaying upper bound for the system states is
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also derived. This dynamic quantization strategywas further incor-
porated with round-robin scheduling in Liu, Fridman, Johansson,
and Xia (2016).

Through careful examination of the derivation and the un-
derlying logic of Liu et al. (2015), we found that the dynamic
quantization algorithm and the upper bound for system states are
conservative. This paper gives the following improvements: (1) A
shorter time Tnew is found to allow the LKF to decay to a certain
proportion; a smaller time margin for the dynamic quantization
algorithm is further proposed to be sufficient to tackle the variation
of time delay. Combining these two improvements, we can achieve
more frequent updates of the zoom variable, leading to faster con-
vergence of the system stateswhile guaranteeing that no quantizer
saturation occurs. (2) A smaller upper bound for the system states
in terms of both initial value and decay rate is found to enable a
closer estimation on the convergence of the system states.

The rest of the paper is organized as follows. In Section 2 the
improved zooming-in algorithm is designed to bring faster conver-
gence. The smaller upper bound for the system states is obtained
in Section 3. The effectiveness of the algorithm is illustrated in
Section 4. Finally, conclusions are stated in Section 5.

2. Improved zooming-in algorithm

Consider the closed-loop model of the networked control sys-
tem with delayed quantized feedback (6) in Liu et al. (2015):

ẋ (t) = Ax (t)+ A1x (tk − ηk)+

N∑
i=1

Biωi (t) ,

t ∈ [tk, tk+1)

(1)
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where x ∈ Rn, A, A1 ∈ Rn×n, Bi ∈ Rn×ni , i = 1, . . . ,N , ηk is the
communication delay ηk = tk − sk, 0 ≤ ηm ≤ ηk ≤ ηM , sk is the
sequence of sampling instants,

0 = s0 < s1 < · · · < sk < · · · , sk+1 − sk ≤ MATI.

MATI is the maximum allowable transmission interval. ωi (t) =

qiµ (Cix (sk))− Cix (sk) ∈ Rni , i = 1, . . . ,N represent the quantiza-
tion errors. If |Cix (sk)| ≤ µMi, then the i’th quantizer does not sat-
urate and |ωi (t)| ≤ µ∆i, µ is the quantization parameter, ∆i and
Mi are the quantization error bounds and ranges, respectively. By
applying the time-delay approach and constructing a Lyapunov–
Krasovskii functional (LKF) V (t, xt , ẋt) (also written as V or V (t)
for simplicity later in this paper), it is obtained in Lemma 1 of
Liu et al. (2015) that when certain LMIs are feasible, the following
inequality holds:

d
dt

V ≤ −2αV +

N∑
i=1

biµ2
|ωi (t)|2

then we have

V (t) ≤ e−2α(t−t0)V (tk)+ µ2
N∑
i=1

bi∆2
i

∫ t

t0

e−2α(t−s)ds

= e−2α(t−t0)V (t0)+
µ2

2α

N∑
i=1

bi∆2
i

(
1 − e−2α(t−t0)

)
=

(
V (t0)−

µ2

2α

N∑
i=1

bi∆2
i

)
e−2α(t−t0) +

µ2

2α

N∑
i=1

bi∆2
i . (2)

Remark 1. In (2), the integral is calculated instead of using the
inequality∫ t

t0

e−2α(t−s)ds <
∫

∞

t0

e−2α(t−s)ds =
1
2α

as in Liu et al. (2015), which leads to

V (t) ≤ V (t0) e−2α(t−t0) +
µ2

2α

N∑
i=1

bi∆2
i .

Hence, the result is smaller. Then by exploiting (2), we present the
alternative for Lemma 2 of Liu et al. (2015):

Lemma 1. Given Mj > 0, j = 0, 1, . . . ,N, ∆i > 0, i = 0, 1, . . . ,N,
0 < ηm < τM and tuning parameters α > 0, 0 < ν < 1, assume that
there exist scalars 0 < β < 1, i = 1, . . . ,N, n × n matrices P > 0,
S0 > 0, R0 > 0, S1 > 0, R1 > 0, S12 such that the LMIs in Lemma 1
of Liu et al. (2015) and

M2
0C

T
i Ci < PM2

i , i = 1, . . . ,N (3)

1
2α

N∑
i=1

bi∆2
i < βν2M2

0 (4)

hold. Let µ >0 be constant. Then the solutions of (1) with initial
condition xT (t0) Px (t0) < µ2M2

0 satisfies the followings:
(i) The quantizers do not saturate at s1, . i.e. |Cix (s1)| = |yi (s1)| <
µMi;
(ii) V (t) < e−2α(t−t0)

(
1 − βν2

)
µ2M2

0 + βν2µ2M2
0 for t > t0;

(iii) After finite time Tnew = −
ln ν2(1−β)

1−βν2

2α , it is guaranteed that V (t) <
ν2µ2M2

0 .

Fig. 1. The zooming-in algorithm for dynamic quantization.

Proof. (i) The same as Liu et al. (2015).
(ii) We know from (2) and (4) that the solution of (1) with initial
condition xT (t0) Px (t0) < µ2M2

0 satisfies

V (t) <
(
µ2M2

0 − βν2µ2M2
0

)
e−2α(t−tk) + βν2µ2M2

0

= e−2α(t−ti)
(
1 − βν2

)
µ2M2

0 + βν2µ2M2
0 .

(iii) It is clear from point (ii) that when t is large enough such that
e−2α(t−tk) =

ν2(1−β)
1−βν2

, then, it is held that V (t) < ν2µ2M2
0 , i.e. the

LKF evolves from V (t0) < µ2M2
0 to V (t) < ν2µ2M2

0 within time

Tnew = −
ln ν2(1−β)

1−βν2

2α . □

Due to the adoption of a smaller bound of V , the value of Tnew
is smaller than that obtained in Liu et al. (2015), which is T =

−
ln ν2(1−β)

2α . Next we propose the modified dynamic quantization
algorithm as shown in Fig. 1. The difference between the algorithm
and that of Liu et al. (2015) is that the zooming-in condition
becomes sk ≥ skr +Tnew+ηM instead of sk ≥ skr +T+2ηM−ηm, thus
leads to more frequent zooming-in. In the following proposition,
we prove that our zooming-in algorithm can also, like that of Liu
et al. (2015), prevent quantizer saturation.

Proposition 1. Under the zooming-in algorithm in Fig. 1 and the
conditions of Lemma 1 as well as

M2
0C

T
i Ci < PM2

i , i = 1, . . . ,N (5)

the solutions of (1) that start with xT (t0) Px (t0) < µ2M2
0 satisfy

|Cix (sk)| = |yi (sk)| < µMi for i = 1, . . . ,N at every sampling
instant, that is, there is no quantizer saturation.

Proof. We know from the proposed zooming mechanism that

skr − tkr−1 = skr −
(
skr−1 + ηkr−1

)
≥ Tnew + ηM − ηkr−1 ≥ Tnew (6)

which guarantees a time interval of length at least Tnew for the LKF
to evolve before the next sampling interval.

From (6), we get sk1 > t0 + Tnew . Combining with Lemma 1,
we have V

(
sk1
)
< ν2µ2

0M
2
0 . Then, according to (5), the following

holds:

xT (sk) CT
i Cix (sk) <

xT (sk) Px (sk)M2
i

M2
0

< ν2µ2
0M

2
i
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