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a b s t r a c t

This paper considers the problem of modeling and boundary feedback stabilization of extensible and
shearable slender beams with large deformations and large rotations in space under both deterministic
and stochastic loads induced by flows. Fully nonlinear equations of motion of the beams are first derived.
Boundary feedback controllers are then designed for global practical exponential p-stabilization of the
beams based on the Lyapunov direct method. A new Lyapunov-type theorem is developed to study well-
posedness and stability of stochastic evolution systems (SESs) in Hilbert space.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper focuses on relatively slender beams, for which the
shear magnitude is smaller than that of the spatial gradient of the
transverse displacements. Due to their large length-to-diameter
ratio, extensibility and shearability, the relatively slender beams
exhibit both large and small motions (both deflection and ro-
tation) under external (both deterministic and stochastic) loads.
Although large motions can cause a serious failure (loop formation
or hockling) in beams, most of existing boundary control works
(e.g., Cavallo, de Maria, & Pirozzi, 2010; Chentouf & Wang, 2015;
Do, 2017b; Do & Pan, 2008; Fard & Sagatun, 2001; Guo & Jin, 2013;
He & Ge, 2015; He, Ge, Voon, How, & Choo, 2014; He, Huang, &
Li, 2017; He, Nie, Meng, & Liu, 2017; He, Sun, & Ge, 2015; Jin
& Guo, 2015; Luo, Guo, & Morgul, 1999; Meurer, Thull, & Kugi,
2008; Miletíc, Stürzer, Arnold, & Kugi, 2016; Nguyen, Do, & Pan,
2013; Özer, 2017; Queiroz, Dawson, Nagarkatti, & Zhang, 2000;
Zuyev, 2015 based on the Lyapunov direct and flatness meth-
ods, and Böhm, Krstíc, Küchler, and Sawodny (2014), Krstíc and
Smyshlyaev (2008a) and Krstíc and Smyshlyaev (2008b) based on
the backstepping method on single beams, and Endo, Matsuno,
and Jia (2017), Henikl, Kemmetmüller, Meurer, and Kugi (2016),
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Kater and Meurer (2016) and Lagnese, Leugering, and Schmidt
(1994) on multiple beams) on boundary control have considered
only small deflection (vibration). None of the equations of motion
in the aboveworks can describe loop formation due to the fact that
they are obtained by linearizing the axial stretch and rotational
motions, and neglecting the shear strains, see Eringen (1952) and
Love (1920), and therefore exclude large motions.

Boundary control of slender beams with large motions has
received less attention. In Do (2011) and Do and Pan (2009) (see
also Athisakul, Monprapussorn, and Chucheepsakul (2011) and
Kokarakis and Bernitsas (1987) formodels of slender beams,where
only large deflection is considered), boundary control of unshear-
able risers/beamswith large deflections was considered. Boundary
control of extensible and shearable slender beams has been con-
sidered in Do (2016a) in three-dimensional space (3D). In these
works, the external loads are assumed to be deterministic except
for the work in Do (2017a), where stochastic external loads are
initially considered for slender beams in two-dimensional space
(2D). Control design and stability analysis for stochastic beams
is much harder than for deterministic beams. For example, the
stochastic component of flows, which enters to the beam system
via the hydrodynamic/aerodynamic Centripetalmatrix, potentially
destabilizes the beam system under deterministic control designs.

Themain contributions of this paper consist of three parts. First,
fully nonlinear equations of motion of the beams and their proper-
ties are derived in an appropriate form for boundary control design
by using deformation theory and sea loads on offshore structures.
The unit quaternion is used for attitude representation of the
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beams to resolve singularities caused by Euler angles. Second,
boundary feedback controllers are designed for global practical ex-
ponential stabilization of the beams based on the Lyapunov direct
method. In the control design, various Young’s and Hölder’s in-
equalities and Sobolev embedding, a flexible combination of Earth-
fixed and body-fixed coordinates, and cross vector products are
used. Third, a new Lyapunov-type theorem is developed to study
well-posedness and stability analysis of a class of nonlinear SESs in
Hilbert space. This theorem does not require global monotonic and
linear growth conditions as in e.g., Chow (2007), Liu (2006), Prato
and Zabczyk (1992) and Prévôt and Röckner (2007). The Lyapunov
function uses ∥.∥V instead of ∥.∥H as in Do (2017b). This allows
to study well-posedness of SESs, for which it is difficult to apply
multiple Gelfand triples because V ⊂ H .

Notations. The symbols ∧ and ∨ denote the infimum and supre-
mum operators, respectively. The symbols ‘‘col’’, ‘‘×’’, ‘‘E’’ denote
the column operator, vector cross product operator, and the ex-
pected value, respectively.

2. Mathematical model

We assume that plane sections are rigid; and the beammaterial
is elastic, homogeneous and isotropic. Equations of motion are
briefly derived, see Do (2016a).

2.1. Kinematics

The reference configuration B0 is described by the position of
the base straight line C0 parameterized by its arclength coordinate
s and the fixed basis (b0

1, b
0
2, b

0
3), where (b0

1, b
0
2) are the principal

axes of inertia of the cross section S0(s) through N0, see Fig. 1A.
Thus, C0 is described by r0(s) = 0e1 + 0e2 + se3. We denote by Γ

the beam length in its reference state. The actual configuration B
of the curved beam is described by the actual position of the base
curve C and the actual configuration S of cross sections through N .
The base curve is described by r while the material cross section
is described by the unit vectors {b1, b2, b3} with b3 being aligned
with rs and b3 = b1 × b2. The deformation from B0 to B is
achieved by means of the vector r = r1b1 + r2b2 + r3b3, and the
orthogonal tensor R1(θ) describing the incremental rigid rotation
suffered by S0 so that bk = R1(θ)b0

k, k = 1, 2, 3 via the sequence
θ1 → θ2 → θ3. This gives bks = R1sb0

k , where R1s = µ × bk with
µ the axial vector of R1sRT

1 . The generalized strains (the stretch ε

and shear strains η1 and η2) are expressed by the stretch vector
ν = η1b1 + η2b2 + (1 + ε)b3 in its local basis: ν = rs. Thus,

rs = η1b1 + η2b2 + (1 + ε)b3

µ=µ1b1+µ2b2+µ3b3, ω=ω1b1+ω2b2+ω3b3,

bks=µ×bk, bkt =ω×bk, (µ× bk)t =(ω×bk)s.
(1)

From the above derivation, we have

col(η1, η2, ε) = RT
1 (θ)rs − r0s ,

col(µ1, µ2, µ3)=R−1
2 (θ)col(θ1s, θ2s, θ3s),

col(ω1, ω2, ω3)=R−1
2 (θ)col(θ1t , θ2t , θ3t ),

(2)

where R2(θ) is the transformation matrix that relates the angular
vector ω in the local basis to the Euler rate vector θt . When θ2 =

±
π
2 , there are singularities in (2). Thus, we use the unit quaternion

vector q = col(q1, q2, q3, q4) for attitude representation with
∥q∥2

= 1 relating to (θ1, θ2, θ3) via the sequence θ1 → θ2 → θ3,
see Kuipers (2002). Thus, R1 is given in terms of q as:

R1(q) = I3 + 2q1S(q̄) + 2S2(q̄), (3)

Fig. 1. (A) Deformation geometry of the beam; (B) Forces and moments acting on a
beam element.

where q̄ := col(q2, q3, q4) and thematrix S(x) is defined as S(x)y =

x × y for all (x, y) ∈ R3. Let us also define:

K (q) =
1
2

[
−q̄T

q1I3 + S(q̄)

]
. (4)

2.2. Kinetic

Balancing linear and angular momentum on a beam element,
see Fig. 1B, gives the equations of motion:

m0r̃tt = ns + R1(θ)f ⋄

1 ,

J0ωt = ms + rs × n − ω × J0ω + f ⋄

2 ,
(5)

wherem0 is the beammass per unit length; J0 is the mass moment
matrix of inertia; n and m denote the contact force and moment
vectors; and (see Fig. 1A)

r̃ = r − r0. (6)

(a) Nonconservative forces and moments f ⋄

1 and f ⋄

2 : Let v be the
linear velocity vector in the local basis, i.e.,

v = R−1
1 (θ)r̃t . (7)

Let vf and ωf be the linear and angular velocity vectors of the fluid
passing the beam at (s, t). The total generalized force vector in-
duced by the fluid acting on the beam denoted by f ⋄

:= col(f ⋄

1 , f ⋄

2 )
in the local basis is Fossen (2002):

f ⋄
=M⋄

A v
⋄

rt + C⋄

A (v
⋄

r )v
⋄

r  
Added mass

+D⋄

A(v
⋄

r )v
⋄

r  
Damping

+f ⋄

0 (s, t)  
Other loads

, (8)

where

v⋄

r = col(vr ,ωr ), vr = v − vf , ω = ω − ωf ,

f ⋄

0 = col(f ⋄

10, f
⋄

20),M
⋄

A = diag(MA, JA),
D⋄

A(v
⋄

r ) = diag(DA1(vr ),DA2(ωr )),
C⋄

A (v
⋄

r )v
⋄

r = col(ωr × (MAvr ),ωr × (JAωr )
+vr × (MAvr )),

DA1(vr ) = DA11 + DA12vr ⊗ vr ,
DA2(ωr ) = DA21 + DA22ωr ⊗ ωr ,

(9)

where the added mass and added inertia matrices MA and JA are
diagonal and negative definite; DA1(vr ) and DA2(ωr ) are damping
matrices; DAij, (i, j) = 1, 2 are diagonal and negative definite
matrices; and the operator⊗ is defined as a⊗a := diag(a21, a

2
2, a

2
3)

with a = col(a1, a2, a3). In general, vf , ωf and f ⋄

i0 with i = 1, 2
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