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a b s t r a c t

This paper focuses on robust nonlinear coordination of heterogeneous uncertain second-order multi-
agent systems subject to directed communication topologies. We develop a nonlinear internal model
principle based approach for the problem in a framework of cooperative global robust output regulation,
independent of the a priori of the leader dynamics information except its order. As a major consequence,
this study assures, by means of establishing a strict-Lyapunov function for the closed-loop system, not
only a specified exponential convergence rate but also tolerable bounds of unmodeled disturbances.
Hence, the former guarantees an appealing performance and the latter an important robustness property.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Feedback control of second-order systems has wide impacts
on control theory developments and practice; to name but a few,
see Bartolini, Ferrara, and Usai (1997), Fischer, Kan, Kamalapurkar,
and Dixon (2014), Loría (2016) Roup and Bernstein (2001), Xian,
de Queiroz, Dawson, and McIntyre (2004), and references thereof
for an overview. One recent research focus is on coordination of
multiple second-order systems in a distributed feedback control
fashion, or namely synchronizing individual position/velocity in
literature. For concrete studies, one may refer to Hong, Chen,
and Bushnell (2008), Ren (2008) and Zhou, Zhang, Xiang, and
Wu (2012) for linear second-order multi-agent systems, and to
Fan, Chen, and Zhang (2014), Meng, Lin, and Ren (2013), Song,
Cao, and Yu (2010), Su, Chen, Wang, and Lin (2011) and Su and
Huang (2013a) for nonlinear extensions from interesting aspects.
More specifically, to tackle such nonlinearity, Song et al. (2010)
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and Su et al. (2011) developed some linear controllers for non-
linear second-order multi-agent systems satisfying certain global
Lipschitz-like conditions. Later, to relax such conditions, Fan et al.
(2014) and Meng et al. (2013) further addressed some linear high-
gain feedback controllers for the purpose of semi-global control
and Su and Huang (2013a) explored a nonlinear controller for
achieving global control.

One of the interesting research topics from the robust control
viewpoint is to allow the control plant undergoing parametric
uncertainties as well as external disturbances. In this direction,
several interesting studies have been conducted. One attempt is
to develop non-smooth feedback controllers following the sliding-
mode control technique; see Wang and Ji (2015) and references
thereof. In the leader-following scenario, this type of cooperative
design is usually feedforward. That is, the dynamics of the leader
system (more specifically, both the reference position and velocity
information) has to be exactly known and utilized by the followers.
The other attempt is to explore the internal model principle based
controller leading to the so-called cooperative robust output reg-
ulation design, see Su and Huang (2013a) and references thereof.
This approach can further allow that the dynamics of the leader
system only partially known by the followers. For example, as
shown in Su and Huang (2013a), when tracking a sinusoidal signal,
the canonical internal model controller design relies only on its
frequency, but not its amplitude and phase.

In practice, the problem with unknown leader dynamics is
certainly of greater interest. Practically, thismay occur if the leader
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dynamics contains unknown parameters. For example, the funda-
mental sinusoidal signals with unknown frequencies, amplitudes,
and phases are exactly of this case to be modeled. One attempt in
this direction is to combine canonical internalmodelwith adaptive
control tools, see Su andHuang (2013b). This approach, however, is
restricted to plants with unity relative degree and topologies with
bidirected communication. A preliminary study in Wang, Su, and
Xu (2017) provided a non-adaptive internal model design but still
worked on such bidirected communication topologies.

The main objective of this research is to explore a general
investigation of robust coordination of nonlinear heterogeneous
second-ordermulti-agent systems subject to unknown leaders and
directed communication topologies. A nonlinear internal model
based design is proposed in the framework of cooperative robust
output regulation. Specifically, we first construct a set of nonlinear
internal models that successfully convert the robust coordina-
tion problem into a robust non-adaptive cooperative stabilization
problem of the augmented system. Then, we present an integral
input-to-state stability (iISS) based two-step block backstepping
synthesis for the resulting stabilization problem. The contribution
of the present study is two-fold. On one hand, the developed
method can give rise to a successful cooperative output regulator
design for the general directed nonlinear networks with unknown
leaders. On the other hand, a strict-Lyapunov function can be es-
tablished, assuring an exponential convergence of the closed-loop
system and providing an explicit bound of unmodeled actuator
disturbances. It is noted that, the former guarantees an appealing
performance and the latter an important robustness property.

The paper is organized as follows. Section 2 introduces the
problem formulation of the cooperative robust output regulation
for second-order nonlinear networks. Section 3 elaborates the non-
linear internalmodel design and Section 4presents themain result.
Section 5 presents an illustrative example to show the efficiency
of the developed method. Section 6 closes the paper with a few
remarks.

Throughout the paper, ∥ · ∥ is the Euclidean norm. I is an
identity matrix of a compatible dimension. R≥0 denotes the set of
nonnegative real numbers. A function f : R≥0 → R≥0 is of class K,
i.e., f ∈ K if, it is continuous and strictly increasing with f (0) = 0.
f : R≥0 → R≥0 is of classK∞ if, it is of classK and unbounded. The
set of bounded K functions is denoted by Ko, i.e., Ko = K \ K∞. Id
denotes the identical K∞ function. The function f : R≥0 × R≥0 →

R≥0 is of class KL if, for each fixed s ≥ 0, β(s, t) is continuous and
decreases to zero as t → +∞, and for each fixed t ≥ 0, β(·, t) is
of class K. For two continuous and positive definite functions κ1(s)
and κ2(s), κ1 ∈ O(κ2) means lim sups→0+

κ1(s)
κ2(s)

< ∞. For a pair of
functions f1(s), f2(s) of compatible dimensions, f1 ◦ f2(s) = f1(f2(s))
denotes function composition.

2. Formulation and preliminary

Consider a dynamic network of nonlinear heterogeneous
second-order systems described by

miq̈i(t) = fi(qi(t), q̇i(t), v(t), w) + ui(t), 1 ≤ i ≤ N (1)

where, for 1 ≤ i ≤ N , qi ∈ R is the position, q̇i ∈ R is the velocity,
ui ∈ R is the control input, w ∈ W represents some constant un-
knownparameter or parametric uncertainty in a specified compact
set W, and the parameter mi ≜ mi(w) is the uncertain inertia sat-
isfying 0 < mi ≤ mi ≤ m̄i for known constants mi, m̄i. The exoge-
nous signal v(t) ∈ Rnv is generated by the leader with agent index
0 as

v̇(t) = S(σ )v(t), q0(t) = q0(v(t), w) (2)

where the output q0 ∈ R is the reference to specify certain desired
output reference, and σ ∈ S thereof is a constant unknown param-
eter in a known compact set S.

Assume that for each σ ∈ S, all eigenvalues of S(σ ) are distinct
with zero real parts and the leader (2) is invariant in a compact set
V. In other words, the leader may generate any mixed sinusoidal
and step signals and only the number of frequencies is known. All
the involved amplitudes, frequencies, and phases are unknown.
For technical simplicity, we further assume that the functions
fi(qi, q̇i, v, w) for 1 ≤ i ≤ N and q0(v,w) are smooth in their
arguments.

2.1. Problem formulation

This study is concernedwith theposition tracking error givenby
for 1 ≤ i ≤ N , e(t) = [e1(t), . . . , eN (t)]T with ei(t) = qi(t) − q0(t),
and the relative position error given by ê(t) = [ê1(t), . . . , êN (t)]T

with êi(t) =
∑N

j=0aij
(
qi(t) − qj(t)

)
, where coefficients aij for 0 ≤

i, j ≤ N are determined by a weighted adjacency matrix A ≜
[aij]0≤i,j≤N relating to a communication digraph G = {V, E,A} for
a node set V ≜ {0, 1, 2, . . . ,N}, an edge set E ⊂ V × V; see Godsil
and Royle (2001) for details. LetH = [hij]1≤i,j≤N with hij ≜

∑N
k=0aik

when i = j and hij ≜ −aij when i ̸= j. Since êi =
∑N

j=0aij(ei − ej)
with e0 ≡ 0, we have ê(t) = He(t).

Problem2.1. For the network (1) and (2), the control goal is to seek
a smooth controller of the form ui = gc

i (χi, êi, q̇i), χ̇i = f ci (χi, êi, q̇i),
1 ≤ i ≤ N , such that, for any [v(0)T, wT, σ T

]
T

∈ D ≜ V × W × S
and for any initial conditions qi(0), q̇i(0), and χi(0) in their entire
spaces, the trajectory of the closed-loop system is bounded over
[0,∞), and the position tracking error satisfies limt→+∞e(t) = 0.

Problem 2.1 is called cooperative robust output regulation that
has been extensively studied in literature from various aspects;
see Isidori,Marconi, andCasadei (2014),Meng, Yang, Dimarogonas,
and Johansson (2015), Su and Huang (2013a), Wang, Hong, Huang,
and Jiang (2010), Wieland, Sepulchre, and Allgöwer (2011) and
references thereof.

2.2. Definition

The main tool for solving Problem 2.1 is the notion of iISS and
its iISS-Lyapunov function characterization; seeAngeli, Sontag, and
Wang (2000) for details. Consider a general nonlinear system

ẋ = f (x, u, µ) (3)

where x ∈ Rnx is the state, u ∈ Rnu is the input, µ ≜ µ(t) ∈ D
for all t ≥ 0 is locally essentially bounded disturbance varying in
a compact set D, and f is a smooth vector field in its arguments,
satisfying f (0, 0, µ) = 0 for all µ ∈ D. Assume the system (3) is
forward complete.

Definition 2.1. A smooth function V : R≥0 × Rnx → R≥0 is called
an iISS-Lyapunov function (with state x and input u, robustly on µ)
for the system (3) if there are comparison functions α, ᾱ ∈ K∞,
α ∈ K,1 and γ ∈ K such that, along the trajectories of (3), for all
µ ∈ D,

α(∥x∥) ≤ V (t, x) ≤ ᾱ(∥x∥), V̇ ≤ −α ◦ V (t, x) + γ (∥u∥) (4)

where V̇ ≜ ∂V
∂t +

∂V
∂x f (x, u, µ). The system (3) is called iISS if it

has an iISS-Lyapunov function. Moreover, if the above α of (4) can

1 For the sake of technical simplicity, we use the iISS-Lyapunov function with a
class K dissipation gain α instead of the general positive definite one, see Angeli et
al. (2000).
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