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a b s t r a c t

This paper studies a remote state estimation problem where a sensor, equipped with energy harvesting
capabilities, observes a dynamical process and transmits local state estimates over a packet dropping
channel to a remote estimator. The objective is to decide, at every discrete time instant, whether the
sensor should transmit or not, in order tominimize the expected estimation error covariance at the remote
estimator over a finite horizon, subject to constraints on the sensor’s battery energy governedby an energy
harvesting process.We establish structural results on the optimal schedulingwhich show that, for a given
battery energy level and a given harvested energy, the optimal policy is a threshold policy on the error
covariance. Similarly, for a given error covariance and a given harvested energy, the optimal policy is a
threshold policy on the current battery level. An extension to the problem of transmission scheduling and
control with an energy harvesting sensor is also considered.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The harvesting of energy from the surrounding environment,
such as solar, thermal, mechanical vibrations, or electromagnetic
radiation, has attracted significant research interest, due to its
potential for enabling self-sustaining and environmentally friendly
devices. In wireless communications, transmission strategies
for optimizing communication objectives such as maximizing
throughput or minimizing transmission delay have been exten-
sively studied, see e.g. Ho and Zhang (2012), Ozel, Tutuncuoglu,
Yang, Ulukus, and Yener (2011) and Sharma, Mukherji, Joseph, and
Gupta (2010). In the control literature, power/energy allocation
strategies for optimizing state estimation (Li, Quevedo, Lau, Dey,
& Shi, 2017; Nourian, Leong, & Dey, 2014) and control (Knorn &
Dey, 2017) objectives have also received recent attention.

In event triggered estimation, a sensor will transmit to a
remote estimator only when certain events occur, e.g. if the esti-
mation quality has deteriorated sufficiently, with different trans-
mission strategies proposed (Li, Lemmon, & Wang, 2010; Trimpe
& D’Andrea, 2014; Wu, Jia, Johansson, & Shi, 2013; Xia, Gupta,
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& Antsaklis, 2013). A probabilistic triggering mechanism has also
been recently studied in event triggered estimationwith an energy
harvesting sensor (Huang, Shi, & Chen, 2017).

In this paper we will study a transmission scheduling problem
for remote state estimation, that minimizes the expected estima-
tion error covariance at the remote estimator. The scheduling is
subject to the constraint that the sensor is equipped with energy
harvesting capabilities, and transmission over a packet dropping
channel can only occur if there is sufficient energy in the sensor
battery. Note that one can regard the situation where there is
insufficient battery energy for transmission as a sensor failure.
Other related work on sensor failures include Chen, Yu, Zhang, and
Liu (2013), Hounkpevi and Yaz (2007), Qu and Zhou (2013), Wang,
Ho, and Liu (2003), to mention a few.

We will derive structural results on the optimal transmission
policy. Namely, for a given battery energy level and a given har-
vested energy, we will show that the optimal policy is a threshold
policy on the estimation error covariance. Similarly, for a given
error covariance and a given harvested energy, the optimal policy
is a threshold policy on the battery level. This is reminiscent of the
threshold based policies often considered in event triggered esti-
mation.We then extend our results to the problem of transmission
scheduling and control with an energy harvesting sensor, where
one can show that this problem is separable into an LQG-type
control problem and a transmission scheduling problem, with the
optimal transmission schedule having threshold-type behaviour.

Optimality of threshold-type policies has been shown in other
contexts. For the case of noiseless measurements and no packet
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Fig. 1. Remote state estimation with an energy harvesting sensor.

drops, Lipsa and Martins (2011) showed a threshold behaviour
in the difference between the current state and most recently
transmitted state, with Nayyar, Başar, Teneketzis, and Veeravalli
(2013) also considering energy harvesting. In event triggered con-
trol, optimality of threshold policies have been shown in Molin
and Hirche (2010). For variance based triggering (where transmit
decisions depend on the estimation error covariance) with no
energyharvesting, itwas shown in Leong, Dey, andQuevedo (2017)
(see alsoMo, Sinopoli, Shi, & Garone, 2012; Ren, Cheng, Chen, Shi, &
Zhang, 2014) that threshold-type policies are optimal, in the sense
that it minimizes a linear combination of the expected estimation
error covariance and expected energy usage of the sensors.

The paper is organized as follows. Section 2 describes the
system model. The optimal transmission scheduling problem is
formulated in Section 3. Structural results for the optimal transmis-
sion schedule are derived in Section 4. The problemof transmission
scheduling for control with an energy harvesting sensor is consid-
ered in Section 5. Numerical studies are presented in Section 6.

2. Systemmodel

A diagram of the system model is shown in Fig. 1. Consider a
discrete time process

xk+1 = Axk + wk (1)

where xk ∈ Rnx and wk is i.i.d. Gaussian with zero mean and
covariance Q ≥ 0.1 There is a sensor taking measurements

yk = Cxk + vk, (2)

where yk ∈ Rny and vk is Gaussian with zero mean and covariance
R > 0. The noise processes {wk} and {vk} are assumed to be mutu-
ally independent.

The sensor has some computational capabilities and can run a
local Kalman filter. The local state estimates and estimation error
covariances
x̂sk|k−1 ≜ E[xk|y0, . . . , yk−1], x̂sk|k ≜ E[xk|y0, . . . , yk]

P s
k|k−1 ≜ E[(xk − x̂sk|k−1)(xk − x̂sk|k−1)

T
|y0, . . . , yk−1]

P s
k|k ≜ E[(xk − x̂sk|k)(xk − x̂sk|k)

T
|y0, . . . , yk]

can be computed at the sensor using the standard Kalman filtering
equations.We assume that the pair (A, C) is detectable and the pair
(A,Q 1/2) is stabilizable, with the local Kalman filter operating in
steady state,2 i.e. P s

k|k = P̄, ∀k, where P̄ is the steady state value of
P s
k|k, which exists by the detectability assumption.

1 For a symmetric matrix X , we say that X > 0 if it is positive definite, and X ≥ 0
if it is positive semi-definite. Given two symmetric matrices X and Y , we say that
X ≤ Y if Y − X is positive semi-definite, and X < Y if Y − X is positive definite.
2 The local Kalman filter in general converges to steady state at an exponential

rate.

Let νk ∈ {0, 1} be decision variables such that νk = 1 if and only
if x̂sk|k is to be transmitted3 by the sensor to the remote estimator
at time k. Let Bk denote the battery level of the sensor at time k,
with Bmax themaximumcapacity of the sensor’s battery. There is an
energy usage of E for each scheduled transmission. Transmission
at time k can only occur if there is sufficient energy in the battery,
i.e. νk = 1 is possible only when Bk ≥ E. The sensor is equipped
with energy harvesting capabilities, with the energy harvested by
the sensor between the discrete time instants k− 1 and k denoted
by Hk. Similar to Ho and Zhang (2012), the evolution of the battery
level is modelled as

Bk+1 = min{Bk − νkE + Hk+1, Bmax}, (3)

with νk = 0 if Bk < E. The harvested energy process {Hk} can in
general be temporally correlated, e.g. the amount of solar energy
harvested may differ significantly depending on the time of day
and weather conditions (Ho & Zhang, 2012). In this paper we will
assume that {Hk} is Markovian. We denote the support of {Hk} by
H, and that of Bk by B ⊆ [0, Bmax].

At time instances when νk = 1, the sensor transmits its local
state estimate x̂sk|k over a packet dropping channel, see Fig. 1. Let
γk ∈ {0, 1} be random variables such that γk = 1 if and only if
the transmission at time k is successfully received by the remote
estimator. We will assume that {γk} is i.i.d. Bernoulli with

P(γk = 1) = λ ∈ (0, 1).

At instances where νk = 1, it is assumed that the remote es-
timator knows whether the transmission was successful or not,
i.e., the remote estimator knows the value γk, with droppedpackets
discarded. Define

Ik ≜{ν0, . . . , νk, ν0γ0, . . . , νkγk, ν0γ0x̂s0|0, . . . , νkγkx̂sk|k}

as the information set available to the remote estimator at time
k. Denote the state estimates and error covariances at the remote
estimator by:

x̂k|k ≜ E[xk|Ik], Pk|k ≜ E[(xk − x̂k|k)(xk − x̂k|k)T |Ik]. (4)

Given that the decision variables νk depend on Pk−1|k−1,Hk and
Bk, but not on the state xk, the optimal remote estimator can be
shown to have the following form, similar to Xu and Hespanha
(2005):

x̂k|k =

{
Ax̂k−1|k−1 , νkγk = 0

x̂sk|k , νkγk = 1

Pk|k =

{
f (Pk−1|k−1) , νkγk = 0

P̄ , νkγk = 1,

(5)

where

f (X) ≜ AXAT
+ Q . (6)

We assume that γk is fed back to the sensor before the trans-
mission decision at the next time instant k + 1. Thus, the remote
estimate Pk|k can be reconstructed at the sensor with this acknowl-
edgement mechanism.4

Define the countable set

S = {P̄, f (P̄), f 2(P̄), . . .}, (7)

where f n(.) is the n-fold composition of f (.), with the convention
that f 0(X) = X . Then it is clear from (5) that S consists of all

3 When there are packet drops, sending state estimates generally gives better
estimation performance than sending measurements (Xu & Hespanha, 2005).
4 The case of imperfect feedback acknowledgements can also be considered,

using similar ideas as in Nourian et al. (2014).
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