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a b s t r a c t

We consider a system for which two predesigned stabilizing output feedback controllers with bounded
domains of attraction are known. One renders the system asymptotically stable with some desired
performance, and the other provides ultimate boundedness with larger domain of attraction. Assuming
that two subsets of the domains of attraction are known, one larger than the other, this work states the
problem of combining both controllers with the goal of guaranteeing asymptotic stability properties in
the largest subset while the desired performance is locally achieved.We design a switching logic between
the controllers that solves the problem, based on the existence of a local tunable observer. The resulting
control law is defined by a hybrid output feedback controller. The effectiveness of the proposed solution
is illustrated by a numerical example.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

There is a multitude of techniques to design asymptotically
stabilizing control feedbacks laws. Nonetheless, most of the well
known techniques (backstepping, feedback linearization, passiva-
tion, etc.) usually do not address the problem of system perfor-
mance. It is of great importance to design control laws providing
both asymptotic stability and guaranteed performance require-
ments. A simple local solution to this problem can be obtained,
for instance, via linearization and linear control design techniques.
This leads to the idea of uniting two predesigned local and global
controllers as proposed in Teel and Kapoor (1997), so that local
performance objectives are achieved while global asymptotic sta-
bility is guaranteed.

Different strategies have beenproposed to tackle the problemof
uniting local and global controllers. The first algorithm for patching
two controllers was presented in Teel and Kapoor (1997) (see
also Morin, Murray, & Praly, 1998; Pan, Ezal, Krener, & Kokotovic,
2001), and later applied to real experiments in Teel, Kaiser, and
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Murray (1997). The solution is given in the form of a continu-
ous static time-invariant controller. However, considering general
control systems, the uniting problem cannot be solved by only
continuous feedback controllers as proved in Prieur (2001). In that
reference (see also Efimov, 2006), a switching strategy based on
hysteresis is also proposed, leading to the class of dynamic hybrid
controllers. In Prieur and Teel (2011), the problem of uniting two
output-feedback controllers is solved. The solution is provided as
a hybrid controller, where the switching is performed with a norm
observer. These results are extended in Sanfelice andPrieur (2013),
considering the uniting of two hybrid output feedback controllers.

All these previous works focus on uniting local and global con-
trollers. However, it is well-known that there are systems which
cannot be globally stabilized, for instance unstable linear systems
with bounded control (Sontag & Sussmann, 1990) and the exam-
ples in Mazenc and Praly (1994). For those systems, instead of
requiring controllers with global stability properties, we can aim
at designing controllers for semi-global asymptotic stabilization.
The work (Teel & Praly, 1994) shows that stabilizability and ob-
servability are sufficient conditions for semi-global stabilization by
dynamic output feedback. This leads to the variation of the uniting
problem presented in this work, where only local stability and
attractivity properties are required. A similar problem is studied
in Efimov, Loria, and Panteley (2011) in an input–output sense
and under a state-independent input-to-output stability assump-
tion. We consider two output feedback controllers; one (referred
to as local controller) renders the system locally asymptotically
stable with some desired performance, and the other (referred to
as regional controller) steers the trajectories starting from some
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given set to a neighborhood of the origin where the first controller
applies. Clearly, the regional controller is assumed to have larger
domain of attraction. The main goal of the proposed uniting prob-
lem is to enlarge the estimation of the domain of attraction of the
local controller in a manner that the performance is not degraded
on a neighborhood of the origin. The proposed solution consists of
a switching logic between the controllers, which is implemented
by a hybrid controller following the formalism for hybrid systems
in Goebel, Sanfelice, and Teel (2012). As opposed to the results
in Prieur and Teel (2011) and Sanfelice and Prieur (2013), our
switching logic is based on a tunable observer. The assumption of
a norm observer is weaker, but the rate of convergence of a norm
observer is usually not tunable. As a consequence, the switching
between the controllers may not be performed sufficiently fast to
avoid a trajectory to leave the domain of attraction of the regional
controller.

On the other hand, similarly to Prieur and Teel (2011) and
Sanfelice and Prieur (2013), the robust local asymptotic stability
of the proposed hybrid system is concluded by the hybrid basic
conditions.

The outline of the paper is as follows. The uniting problem is
introduced in Section 2. Themain result follows in Section 3. First, a
hybrid output feedback controller is designed, and second, the con-
troller is proven to solve the uniting problem. Section 4 illustrates
the effectiveness of the proposed solution by a numerical example.

Notation: Throughout this work, the following notation is used.
The notation ∥x∥ is the Euclidean norm for x ∈ Rn. For a symmetric
matrix A ∈ Rn×n, λm(A) and λM (A) stand for the minimum and
maximum eigenvalues, respectively. A ball in Rn of radius ε is
denoted by B(ε) := {x ∈ Rn

: ∥x∥ ≤ ε}. The symbol ⊖ stands
for the Minkowski difference. A function f : R+ → R+ is of class
K if it is continuous, strictly increasing, and f (0) = 0. The function f
is of classK∞ if f ∈ K and lims→∞f (s) = ∞. A continuous function
f : R+ × R+ → R+ is of class KL if for each fixed s, the function
r ↦→ f (r, s) belongs to class K and for each fixed r , the function
s ↦→ f (r, s) is nonincreasing and lims→∞f (r, s) = 0. Given a set
S ⊂ Rn and a point x ∈ Rn, ∥x∥S := infy∈S{∥x − y∥}. The reader
is referred to Goebel et al. (2012) for the basic notation in hybrid
systems.

2. Problem statement

Consider the following nonlinear systems defined by

ẋ = f (x, u), y = h(x) (1)

where x ∈ Rn is the state of the system, u ∈ Rm is the input, y ∈ Rp

is the output, f : Rn
× Rm

→ Rn is a locally Lipschitz function
with f (0, 0) = 0 and h : Rn

→ Rp is a continuously differentiable
function with h(0) = 0. In addition, let us consider two dynamic
output feedback controllers, leading to the following closed-loop
systems:

ẋ = f (x, α0(ζ0, h(x))),
ζ̇0 = ϕ0(ζ0, h(x)),

(2)

ẋ = f (x, α1(ζ1, h(x))),
ζ̇1 = ϕ1(ζ1, h(x)),

(3)

where ζq ∈ Rlq and ϕq : Rlq ×Rp
→ Rlq , αq : Rlq ×Rp

→ Rm, q ∈

{0, 1}, are continuous functions vanishing at the origin. The local
controller defined by α0 and ϕ0 is assumed to render the closed-
loop system (2) locally asymptotically stable, while the regional
controller given by α1 and ϕ1 guarantees ultimate boundedness of
the closed-loop system (3) for a possibly bounded (but sufficiently
large) set of initial conditions.

In this work, a hybrid output feedback controller is given by
(C,D, u, v, w),where C ⊂ Rl andD ⊂ Rl are closed sets andu : C×

Rp
→ Rm, v : C ×Rp

→ Rl, andw : D ×Rp
→ Rl are continuous

functions. The closed-loop system that results from the feedback
interconnection of the system (1) and the hybrid controller, is
described under the hybrid systems framework of Goebel et al.
(2012) as follows:

ẋ = f (x, u(ζ , h(x)))

ζ̇ = v(ζ , h(x))

}
, ζ ∈ C,

x+
= x

ζ+
= w(ζ , h(x))

}
, ζ ∈ D.

(4)

A trajectory of the hybrid system (4) consists of a hybrid time
domain dom(x, ζ ), and a hybrid arc (x, ζ ) : dom(x, ζ ) → Rn

× Rl.
The trajectories are parameterized by (t, j), where t is the ordinary
time and j corresponds to the number of jumps. Throughout this
work, we will refer to the maximal trajectories of (4) simply as
trajectories. The reader is referred to Goebel et al. (2012) for more
details about the hybrid system framework.

Let us recall that a compact set A ⊂ Rn
× Rl is locally

asymptotically stable for system (4) if

• (stability) for all ε > 0, there exists δ > 0 such that
for all (x0, ζ 0) ∈ Rn

× (C ∪ D) satisfying ∥(x0, ζ 0)∥A ≤

δ, every trajectory of (4) starting at (x0, ζ 0) satisfies
∥(x(t, j), ζ (t, j))∥A ≤ ε, for all (t, j) ∈ dom(x, ζ );

• (attractivity) there exists δa > 0 such that for all (x0, ζ 0) ∈

Rn
× (C ∪ D) satisfying ∥(x0, ζ 0)∥A ≤ δa, every tra-

jectory of (4) starting at (x0, ζ 0) is complete and satisfies
limt+j→∞∥(x(t, j), ζ (t, j))∥A = 0.

Let us assume that the domain of attraction of the closed-loop
system (2) contains some setB ⊂ Rn

×Rl0 . Thus, this work focuses
on the following uniting problem:

Uniting problem: The problem is to find a hybrid output feedback
controller (C,D, u, v, w) such that

• there exist a matrixM ∈ Rl0×l and a compact setA ⊂ {0} ×

ker(M), such that the set A is locally asymptotically stable
for the system (4) with a domain of attraction containing
Bα := {(x, ζ ) ∈ Rn

× (C ∪ D) :
1
α
(x,Mζ ) ∈ B} for some

α > 1;
• there exists a continuous positive definite functionρ ∈ Rn

×

Rl
→ R≥0, and r > 0 such that any trajectory of system

(4) starting at (x0, ζ 0), satisfying ρ(x0, ζ 0) ≤ r , has the
hybrid time domain [0,∞) × {0} and (x(t, 0),Mζ (t, 0)) =

(x̄(t), ζ̄0(t)) for some trajectory (x̄, ζ̄0) of (2).

Roughly speaking, the uniting problem under study consists of
two problems: first, by combining two different controllers, we
look for an enlargement ofB, which is the estimation of the domain
of attraction of system (2); second, there exists a projection from
Rn

× Rl to Rn
× Rl0 such that the projected trajectories of the

hybrid system (4)match the trajectories of the system (2) for small
enough initial conditions.

Note that the set Bα with α > 1 is defined in such a way
that its projection on the state–space of system (2) contains the
estimation B of the domain of attraction of system (2). Therefore,
if the domain of attraction of (4) contains Bα , then there are initial
conditions for which the trajectories of (4) converge toA, although
the trajectories of system (2) are not guaranteed to converge. Fi-
nally, the compactness of the setA is required in order to conclude
robust stability from the results in Goebel et al. (2012), as it will
be commented in Remark 3.
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