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a b s t r a c t

This work deals with a finite-horizon covariance control problem for discrete-time, stochastic linear
systems with complete state information subject to input constraints. First, we present the main steps
for the transcription of the covariance control problem, which is originally formulated as a stochastic
optimal control problem, into a deterministic nonlinear program (NLP) with a convex performance index
and with both convex and non-convex constraints. In particular, the convex constraints in this nonlinear
program are induced by the input constraints of the stochastic optimal control problem, whereas the
non-convex constraints are induced by the requirement that the terminal state covariance be equal to
a prescribed positive definite matrix. Subsequently, we associate this nonlinear program, via a simple
convex relaxation technique, with a (convex) semi-definite program, which can be solved numerically
by means of modern computational tools of convex optimization. Although, in general, the endpoints of
a representative sample of closed-loop trajectories generated by the control policy that corresponds to
the solution of the relaxed convex program are not expected to follow exactly the goal terminal Gaussian
distribution, they are more likely to be concentrated near the mean of this distribution than if they were
drawn from the latter, which is a desirable feature in practice. Numerical simulations that illustrate the
key ideas of this work are also presented.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Given a stochastic discrete-time linear systemsubject to awhite
noise process, we seek to find a feedback control policy that will
steer the uncertain state of this system from a given Gaussian
distribution to another prescribed Gaussian distribution after a
fixed (finite) number of stages under the assumption of complete
state information. In our problem formulation,we consider explicit
constraints on the (weighted) ℓ2-norm of the (random) input se-
quence/process. (We will see that the latter constraints will allow
us to also enforce, in principle, point-wise in time constraints on
the expected value of the norm of the input vector). Without loss
of generality (or perhaps, with minimal loss), we will assume that
the mean of both the initial and terminal Gaussian distributions
are equal to zero, which means that the latter distributions are
described completely in terms of their covariance matrices. For
this reason, we will broadly refer to the special class of distribution
steering problems we consider herein as the finite-horizon covari-
ance control problem with perfect state information.

✩ The material in this paper was partially presented at the 55th IEEE Conference
onDecision and Control, December 12–14, 2016, Las Vegas, NV, USA. This paperwas
recommended for publication in revised form by Editor Ian R. Petersen.

E-mail address: bakolas@austin.utexas.edu.

Literature review: The covariance control problem was first in-
troduced to the controls community by Hotz and Skelton (Hotz &
Skelton, 1985, 1987). This class of problems for both continuous-
time and discrete-time stochastic linear systems has been studied
extensively in the literature (the reader may refer, for instance,
toGrigoriadis& Skelton, 1997;Xu&Skelton, 1992; Yasuda, Skelton,
& Grigoriadis, 1993). All these references, however, focus on the
infinite-horizon problem inwhich the objective is to steer the state
covariance of a stochastic linear system to a steady state covariance
matrix, which is a positive definite matrix that satisfies a relevant
algebraic Lyapunovmatrix equation. The finite-horizon covariance
control problem for continuous-time stochastic linear systems has
been recently addressed in Chen, Georgiou, and Pavon (2016a, b). It
turns out that the continuous-time covariance control problem be-
comes amenable to analysis and computation, when the input and
noise channels of the stochastic linear system are identical (Chen
et al., 2016a). On the other hand, themore general case inwhich the
input and the noise channels do not necessarily match turns out to
be a much harder problem, whose solvability is in general difficult
to be concluded a priori (Chen et al., 2016b). The finite-horizon
covariance control problem for continuous-time stochastic linear
systems in the presence of ‘‘soft’’ state constraints was addressed
in our previouswork (Bakolas, 2016b). A finite-horizon covariance
control problem in which a soft constraint on the terminal state
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covariance is enforced via an appropriate terminal cost term is
addressed in Halder and Wendel (2016).

Problems related to the discrete-time version of the problem
considered in Chen et al. (2016a, b) have appeared in Beghi (1996),
Levy and Beghi (1997) and Vladimirov and Petersen (2015). In
particular, (Beghi, 1996; Levy & Beghi, 1997) deal with the prob-
lem of constructing a Markov process with fixed reciprocal dy-
namics (Jamison, 1970) that connects two prescribed (marginal)
probability densities at the endpoints of a given time-interval.
Ref. (Vladimirov & Petersen, 2015) deals with the problem of
characterizing the noise process that will steer the state of a
(control-free) discrete-time stochastic linear system, emanating
from a known initial Gaussian distribution to a prescribed termi-
nal Gaussian distribution at a given terminal stage and explores
connections between dissipativity theory and robust performance
analysis for discrete-time stochastic linear systems. It should be
mentioned at this point that despite the fact that Beghi (1996),
Levy and Beghi (1997) and Vladimirov and Petersen (2015) present
some very important and insightful results, it is not clear how one
can directly use these results for the design of feedback control
policies that will realize the proposed transitions between the
prescribed (marginal) distributions at the endpoints of a given
time-interval. The design of such control policies becomes even
more challenging when practical input constraints come into play.
Problems of control synthesis for discrete-time stochastic linear
systems, including stochastic MPC problems (see Kouvaritakis
& Cannon, 2015 and references therein), have received a lot of
attention in the literature (Agarwal, Cinquemani, Chatterjee, &
Lygeros, 2009; Chatterjee, Hokayem, & Lygeros, 2011; Hokayem,
Cinquemani, Chatterjee, Ramponi, & Lygeros, 2012; Primbs & Sung,
2009; Skaf & Boyd, 2010). Many of these references rely on convex
optimization techniques. It is in a way surprising that, to the best
of our knowledge, the idea of applying these powerful techniques
to covariance control problems have never been explored in depth
before.

Main contribution: This work is purported to fill the gap in
the literature regarding the synthesis of feedback control policies
for covariance control problems in the presence of input con-
straints by leveraging some of the powerful techniques of convex
optimization (Bertsekas, 2015; Boyd & Vandenberghe, 2004) for
control synthesis problems (Agarwal et al., 2009; Chatterjee et
al., 2011; Goulart, Kerrigan, & Maciejowski, 2006; Hokayem et
al., 2012; Primbs & Sung, 2009; Skaf & Boyd, 2010). Specifically,
we present a solution approach to the finite-horizon covariance
control problem for discrete-time stochastic linear systems, which
is based on the transcription of the stochastic optimal control prob-
lem into a deterministic nonlinear program (NLP) with a convex
performance index and both convex and non-convex constraints.
In particular, the convex constraints of the NLP are induced by the
input constraints, whereas the non-convex constraints are induced
by the requirement that the terminal state covariance be equal to a
prescribed positive definite matrix. We show that the latter matrix
equality constraint can be associated with a positive semi-definite
(convex) constraint by means of a convex relaxation technique.

It should be mentioned that the endpoints of a representative
sample of closed-loop trajectories generated by the control policy
induced by the solution to the relaxed convex program are not
expected to follow exactly the goal terminal Gaussian distribution.
However, they are actually more likely to concentrate near the
mean of the goal distribution than if they were drawn from the
latter. The previous observation along with the fact that the orig-
inal covariance control problem can be associated with a convex
optimization problem, for the solution of which efficient, scalable
and robust algorithms exist (Bertsekas, 2015; Calafiore& El Ghaoui,
2014), outweigh the fact that the latter problem is not equivalent
to the original problem in the strict mathematical sense.

Finally, we wish to mention that a preliminary version of this
paper has appeared in Bakolas (2016a). The latter reference, how-
ever, does not present a complete and detailed description of a
systematic approach for the computation of the feedback control
policy that solves the covariance control problem subject to input
constraints.

Structure of the paper: The rest of the paper is organized as
follows. In Section 2, we formulate the covariance control problem
as a stochastic optimal control problem, which we transcribe into
a finite-dimensional nonlinear program in Section 3. The latter
problem is subsequently associated with a convex program, via a
convex relaxation technique. Illustrative numerical simulations are
presented in Section 4, and finally, Section 5 concludes the paper
with a summary of remarks.

2. Problem formulation

2.1. Notation

We denote by Rn and Rm×n the set of real n-dimensional (col-
umn) vectors and real m × n matrices, respectively. We write Z+

and Z++ to denote the set of non-negative integers and strictly
positive integers, respectively. Given zα , zβ ∈ Z+ with zα ≤ zβ ,
we denote the discrete interval from zα to zβ as [zα, zβ ]d; note that
[zα, zβ ]d = [zα, zβ ] ∩ Z+. Given a complete probability space
(Ω,F,P) and N ∈ Z++, we denote by ℓn2([0,N]d;Ω,F,P) the
Hilbert space of mean square summable and Rn-valued random
sequences or processes XN := {x(t) : t ∈ [0,N]d} on (Ω,F, P).
Given a process XN in ℓn2([0,N]d;Ω,F, P), we denote its norm by
∥XN∥ℓ2 , with ∥XN∥ℓ2 :=

(
E
[∑N

t=0x(t)
Tx(t)

])1/2, whereE [·] denotes
the expectation operator. Given amatrix A ∈ Rm×n, wewill denote
by vec(A) the mn-dimensional column vector formed by stacking
the n columns of A one below the other. If A ∈ Rn×n, then we
denote its trace by trace(A) and by A−1 its inverse (provided that
the latter is well defined). We write 0 and I to denote the zero
matrix and the identity matrix, respectively.

We will denote by bdiag(A1, . . . ,Ak) the block diagonal matrix
formed by matrices A1, . . . ,Ak of compatible dimensions. We will
denote by BLP×Q (m, n) the set of P × Q block lower triangular
matrices whose blocks arem×n (real) matrices; in the special case
when Q = P andm = nwewill write BSLP (m). Recall that a block
matrix A = [Aij] is block lower triangular when Aij = 0 for all
j > i. Note also that BLP×Q (m, n) and BSLP (m) are convex subsets
of RPm×Qn and RPm×Pm, respectively. We will write A = [Aij], if
we want A to be viewed as an element of BLP×Q (m, n), in which
case Aij ∈ Rm×n, whereas the notation A = [A(i,j)

] implies that A
should be viewed as an element ofRPm×Qn, in which case A(i,j)

∈ R.
The space of real symmetric n × n matrices will be denoted by Sn.
Furthermore, we will denote the convex cone of n×n (symmetric)
positive semi-definite and (symmetric) positive definite matrices
by S+

n and S++
n , respectively. Given a matrix A ∈ S++

n (resp. A ∈

S+
n ), wewill alsowriteA ≻ 0 (resp.,A ⪰ 0). In addition, ifA ⪰ 0, we

will denote byA1/2 its (unique) square root in S+
n . Finally, given two

functions f : Y → Z and g : X → Y , we denote by f ◦ g : X → Z ,
where (f ◦ g)(x) = f (g(x)), the composition of f with g .

2.2. Formulation of the optimal covariance control problem

For a given N ∈ Z++, let {A(t) ∈ Rn×n
: t ∈ [0,N − 1]d},

{B(t) ∈ Rn×m
: t ∈ [0,N − 1]d}, and {C(t) ∈ Rn×p

: t ∈

[0,N − 1]d} be known sequences of real matrices. We consider
a stochastic discrete-time linear system that is described by the
following stochastic difference equation:

x(t + 1) = A(t)x(t) + B(t)u(t) + C(t)w(t), (1)
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