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Two robust model predictive control (MPC) schemes are proposed for tracking unicycle robots with input
constraint and bounded disturbances: tube-MPC and nominal robust MPC (NRMPC). In tube-MPC, the
control signal consists of a control action and a nonlinear feedback law based on the deviation of the
actual states from the states of a nominal system. It renders the actual trajectory within a tube centered
along the optimal trajectory of the nominal system. Recursive feasibility and input-to-state stability are
established and the constraints are ensured by tightening the input domain and the terminal region. In
NRMPC, an optimal control sequence is obtained by solving an optimization problem based on the current
state, and then the first portion of this sequence is applied to the real system in an open-loop manner
during each sampling period. The state of the nominal system model is updated by the actual state at
each step, which provides additional feedback. By introducing a robust state constraint and tightening
the terminal region, recursive feasibility and input-to-state stability are guaranteed. Simulation results
demonstrate the effectiveness of both strategies proposed.
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1. Introduction

Tracking control of nonholonomic systems is a fundamen-
tal motion control problem and has broad applications in many
important fields such as unmanned ground vehicle navigation
(Simanek, Reinstein, & Kubelka, 2015), multi-vehicle cooperative
control (Wang & Ding, 2014) and formation control (Lafferriere,
Williams, Caughman, & Veerman, 2005). So far, many techniques
have been developed for control of nonholonomic robots (Ghom-
mam, Mehrjerdi, Saad, & Mnif, 2010; Jiang & Nijmeijer, 1997, Lee,
Song, Lee, & Teng, 2001; Marshall, Broucke, & Francis, 2006; Yang &
Kim, 1999). However, these techniques either ignore the mechani-
cal constraints, or require the persistent excitation of the reference
trajectory, i.e., the linear and angular velocity must not converge
to zero (Gu & Hu, 2006). Model predictive control (MPC) is widely
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used for constrained systems. By solving a finite horizon open-
loop optimization problem on-line based on the current system
state at each sampling instant, an optimal control sequence is
obtained. The first portion of the sequence is applied to the system
at each actuator update (Mayne, Rawlings, Rao, & Scokaert, 2000).
MPC of four-wheel vehicles was studied in Frasch et al. (2013),
Shakouri and Ordys (2011, 2014) and Tashiro (2013), in which real-
time control for application was emphasized. MPC for tracking of
noholonomic systems was studied in Chen, Sun, Yang, and Chen
(2010), Gu and Hu (2006), Sun and Xia (2016) and Wang and Ding
(2014), where the robots were considered to be perfectly modeled.
However, when the system is uncertain or perturbed, stability and
feasibility of such MPC may be lost. Stochastic MPC and robust MPC
are two main approaches to deal with uncertainty (Mayne, 2016).
In stochastic MPC, it usually “soften” the state and terminal con-
straints to obtain a meaningful optimal control problem (see Dai,
Xia, Gao, Kouvaritakis, & Cannon, 2015; Grammatico, Subbara-
man, & Teel, 2013; Hokayem, Cinquemani, Chatterjee, Ramponi,
& Lygeros, 2012; Zhang, Georghiou, & Lygeros, 2015). This paper
focuses on robust MPC and will present two robust MPC schemes
for a classical unicycle robot tracking problem.

There are several design methods for robust MPC. One of the
simplest approaches is to ignore the uncertainties and rely on the
inherent robustness of deterministic MPC, in which an open-loop
control action computed on-line is applied recursively to the sys-
tem (Marruedo, Alamo, & Camacho, 2002b; Scokaert & Rawlings,
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1995). However, the open-loop control and the uncertainty may
degrade the control performance, or even render the system unsta-
ble. Hence, feedback MPC was proposed in Kothare, Balakrishnan,
and Morari (1996), Lee and Yu (1997) and Wan and Kothare (2002),
in which a sequence of feedback control laws is obtained by solving
an optimization problem. The determination of a feedback policy
is usually prohibitively difficult. To overcome this difficulty, it is
intuitive to focus on simplifying approximations by, for instance,
solving a min-max optimization problem on-line. Min-max MPC
provides a conservative robust solution for systems with bounded
disturbances by considering all possible disturbances realizations
(Lee & Yu, 1997; Limén, Alamo, Salas, & Camacho, 2006; Wan &
Kothare, 2002). It is in most cases computationally intractable to
achieve such feedback laws, since the computational complexity
of min-max MPC grows exponentially with the increase of the
prediction horizon.

Tube-MPC taking advantage of both open-loop and feedback
MPC approaches was reported in Fleming, Kouvaritakis, and Can-
non (2015), Langson, Chryssochoos, Rakovi¢, and Mayne (2004),
Mayne, Kerrigan, Van Wyk, and Falugi (2011), Mayne and Langson
(2001), Mayne, Seron, and Rakovi¢ (2005) and Yu, Maier, Chen, and
Allgéwer (2013). Here the controller consists of an optimal control
action and a feedback control law. The optimal control action steers
the state to the origin asymptotically, and the feedback control law
maintains the actual state within a “tube” centered along the op-
timal state trajectory. Tube-MPC for linear systems was advocated
in Langson et al. (2004) and Mayne and Langson (2001), where the
center of the tube was provided by employing a nominal system
and the actual trajectory was restricted by an affine feedback law. It
was shown that the computational complexity is linear rather than
exponential with the increase of prediction horizon. The authors
of Mayne et al. (2005) took the initial state of the nominal system
employed in the optimization problem as a decision variable in
addition to the traditional control sequence, and proved several
potential advantages of such an approach. Tube-MPC for nonlinear
systems with additive disturbances was studied in Mayne et al.
(2011) and Yu et al. (2013), where the controller possessed a
similar structure as in the linear case but the feedback law was re-
placed by another MPC to attenuate the effect of disturbances. Two
optimization problems have to be solved on-line, which increases
the computation burden.

In fact, tube-MPC provides a suboptimal solution because it has
to tighten the input domain in the optimization problem, which
may degrade the control performance. It is natural to inquire if
nominal MPC is sufficiently robust to disturbances. A robust MPC
via constraint restriction was developed in Chisci, Rossiter, and
Zappa (2001) for discrete-time linear systems, in which asymp-
totic state regulation and feasibility of the optimization problem
were guaranteed. In Marruedo, Alamo, and Camacho (2002a), a
robust MPC for discrete-time nonlinear systems using nominal
predictions was presented. By tightening the state constraints and
choosing a suitable terminal region, robust feasibility and input-to-
state stability were guaranteed. In Richards and How (2006), the
authors designed a constraint tightened in a monotonic sequence
in the optimization problem such that the solution is feasible
for all admissible disturbances. A novel robust dual-mode MPC
scheme for a class of nonlinear systems was proposed in Li and Shi
(2014b), the system of which is assumed to be linearizable. Since
the procedure of this class of robust MPC is almost the same as
nominal MPC, we call this class nominal robust MPC (NRMPC) in
this paper.

Robust MPC for linear systems is well studied but for nonlinear
systems is still challenging since it is usually intractable to design a
feedback law yielding a corresponding robust invariant set. Espe-
cially, the study of robust MPC for nonholonomic systems remains
open. Consequently, this paper focuses on the design of robust MPC

for the tracking of unicycle robots with coupled input constraint
and bounded additive disturbance, which represents a particular
class of nonholonomic systems. We discuss the two robust MPC
schemes introduced above. First, a tube-MPC strategy with two
degrees of freedom is developed, in which the nominal system is
employed to generate a central trajectory and a nonlinear feedback
is designed to steer the system trajectory within the tube for all
admissible disturbances. Recursive feasibility and input-to-state
stability are guaranteed by tightening the input domain and ter-
minal constraint via affine transformation and all the constraints
are ensured. Since tube-MPC sacrifices optimality for simplicity,
an NRMPC strategy is presented, in which the state of the nominal
system is updated by the actual one in each step. In such a way, the
control action applied to the real system is optimal with respect
to the current state. Input-to-state stability is also established in
this case by utilizing the recursive feasibility and the tightened
terminal region.

The remainder of this paper is organized as follows. In Section 2,
we outline the control problem and some preliminaries. Tube-MPC
and NRMPC are developed in Sections 3 and 4, respectively. In
Section 5, simulation results are given. Finally, we summarize the
paper in Section 6.

Notation: R denotes the real space and N denotes the collection
of all nonnegative integers. For a given matrix M, ||[M|| denotes its
2-norm. diag{x1, X, . . ., X, } denotes the diagonal matrix with en-
tries xq, Xo, ..., X, € R. For two vectors X = [X1, X2, ..., X,]" and
y=[W1.Y2. ... ynl" X <ymeans {x; <y1,Xs <Ya,....% < ¥n}
and |x| £ [|x1], [X2], ..., |xa|]" denotes its absolute value. ||x| £

xTx is the Euclidean norm. P-weighted norm is denoted as ||x||p £
+/XTPx, where P is a positive definite matrix with appropriate
dimension. Given two sets A and B,A® B £ {a+ bla € A, b € B},
AOB 2 {al{a} @B Cc A} and MA £ {Mala € A}, where M is a
matrix with appropriate dimensions.

2. Problem formulation and preliminaries

In this section, we first introduce the kinematics of the non-
holonomic robot and deduce the coupled input constraint from
its mechanical model. Then, we formulate the tracking problem
as our control objective, and finally give some preliminaries for
facilitating the development of our main results.

2.1. Kinematics of the unicycle robot
Consider a nonholonomic robot described by the following
unicycle-modeled kinematics:

cosf(t) O
siné(t) 0 | u(t), (M
0 1

&(t) = f(&(t), u(t)) =

where £(t) = [p'(t), 8(t)]" € R? x (—m, m] is the state, consisting
of position p(t) = [x(t), y(t)]" and orientation #(t), and u(t) =
[v(t), w(t)]" is the control input with the linear velocity v(t) and
the angular velocity w(t).

The unicycle robot is shown in Fig. 1, where p > 0 is half of
the wheelbase, v" and v® are the velocities of the left and the right
driving wheels, respectively. It is assumed that the two wheels
possess the same mechanical properties and the magnitudes of
their velocities are bounded by |v!| < a and [vf| < a, wherea € R
is a known positive constant. The linear and angular velocities of
the robot are then

v = (vl +0R)/2,
w = (- vL)/Z,o. (2)
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