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a b s t r a c t

State estimation is a key engineering problem when addressing control or diagnosis issues for complex
dynamical systems. The issue is still challenging when the latter systems must be modelled as hybrid
discrete–continuous dynamics, which is true for many complex and safety-critical systems. In this paper,
we investigate nonlinear hybrid state estimation in a bounded-error framework using reliable and robust
methods. We first establish a testable condition for current mode location discernibility. Then we build
our hybrid state estimator which relies on a prediction–correction approach. An illustrative example is
presented.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

State estimation is a key engineering problemwhen addressing
control or diagnosis issueswith complex dynamical systems.Many
systems exhibit both smooth continuous dynamics and abrupt
switches, hence can be efficientlymodelled using hybrid automata,
which combine discrete and continuous variables (Alur et al.,
1995). Hybrid state estimation aims at reconstructing both the
discrete mode, hence the switching sequence, and the associated
continuous state variables, based on a set of possibly discrete-
time measurements, the knowledge of the hybrid model, and as-
sumptions about the uncertainties and perturbations acting on the
system. For instance, Wang, Li, Zhou, and Liu (2007) developed
a robust exponentially ultimately bounded hybrid state observer
using the unknown input extended Kalman observer for hybrid
systems with discrete-time nonlinear dynamics, while Guo and
Huang (2013) developed a moving horizon estimation scheme
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for switched systems and analysed its stability under the uni-
form observability property. Balluchi, Benvenuti, Di Benedetto,
and Sangiovanni-Vincentelli (2013) addressed exponentially ulti-
mately bounded observer design for hybrid systems with linear
continuous-time dynamics, and Barhoumi, Msahli, Djemaï, and
Busawon (2012) addressed the synthesis of high gain observers for
uniformly observable nonlinear hybrid systems.

In this paper, we address hybrid state estimation in the
unknown-but-bounded-error (UBBE) framework, where one as-
sumes that all uncertain quantities, not only measurement noise
but model uncertainty and modelling errors belong to a known
bounded set with no other assumption about the distribution
within the set (Milanese, Norton, Piet-Lahanier, & Walter, 1996;
Schweppe, 1968). In many cases, the UBBE assumption is natural
and straightforward, and it requires less data than any statistical
assumptions. In the UBBE framework, the estimation problem
no longer has a unique solution, but there exists a set of state
vectors that are consistent with measured data, the model struc-
ture and the prior error bounds. Then, set-membership estimation
(SME) techniques allow the derivation of a conservative outer-
approximation of the set of consistent state vectors at each time
instant. There has been a significant research effort related to
SME with continuous systems and the developed approaches may
be sorted in two main types. One type of methods focus on the
design of Luenberger-like interval observers, which assume the
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availability of continuousmeasurements (a.o. Efimov, Raïssi, Cheb-
otarev, & Zolghadri, 2013, Gouzé, Rapaport, & Hadj-Sadok, 2000,
Raïssi, Efimov, & Zolghadri, 2012, Mazenc, Andrieu, & Malisoff,
2015; Mazenc & Dinh, 2014, Thabet, Raïssi, Combastel, Efimov,
& Zolghadri, 2014). Another type of methods use and extend
the predictor–corrector estimation scheme as encountered in the
Kalman filter (Xiong, Jauberthie, Travé-Massuyès, & Gall, 2013).
For nonlinear systems, Kieffer, Jaulin, andWalter (2002) developed
the first predictor–corrector based SME approach for discrete-time
systems using interval analysis, then Jaulin (2002), Meslem and
Ramdani (2011), Meslem, Ramdani, and Candau (2010) and Raïssi,
Ramdani, and Candau (2004) extended the approach to handle
state estimation for continuous-time systems with discrete mea-
surements by combining interval analysis and reachability com-
putation capabilities as obtained using guaranteed solving tools
for interval initial value problems (IVP) for nonlinear ordinary
differential equations (ODE). This paper is in line with the second
set of methods and aims at extending the predictor–corrector-
based SME approach to truly nonlinear hybrid continuous–discrete
dynamical systems with discrete measurements, thus developing
an SME technique to simultaneously reconstruct, at each time in-
stant, the set of consistent system’s switching sequence and the
corresponding set of consistent continuous state vectors.

SME for truly nonlinear hybrid systems is a challenging is-
sue that has attracted only few researchers. To the best of our
knowledge, the only works addressing this issue are by Benazera
and Travé-Massuyès (2009), who addressed hybrid systems with
discrete-time only nonlinear continuous dynamics, and Eggers,
Ramdani, Nedialkov, and Fränzle (2012) who investigated the
feasibility of using satisfiability checkers. Clearly, if one knew in
which mode the hybrid system is operating, the estimation of
the continuous component of the hybrid system would merely
make use of the existing SME algorithms for continuous systems.
Therefore, the main ingredient of our SME for hybrid systems is
the ability to distinguish the current active location mode from
the observation of the input–output behaviour. To the best of our
knowledge, the observability and detectability of hybrid systems
have been studied only for linear switching systems (Babaali &
Pappas, 2005; De Santis, 2011; De Santis & Di Benedetto, 2017;
De Santis, Di Benedetto, & Pola, 2003; De Santis, Di Benedetto, &
Pola, 2009; Fliess, Join, & Perruquetti, 2008; Lou & Yang, 2011). In
this paper we introduce a new computable condition for analysing
mode discernibility for the general class of nonlinear hybrid sys-
tems.We say that two locationmodes are discernible if there exists
a control making it possible to distinguish them by their outputs.
In the case of autonomous systems, the output trajectories must
differ at some point in time. Then, using an one-parameter-tuned
composite continuous model, we show that the identifiability of
the tuning parameter implies current mode discernibility. The
contribution of this paper is twofold. First, we give a com-
putable condition for current mode discernibility, then we build
a predictor–corrector-type scheme for SME of the complete state
of general class of hybrid systems, in the UBBE framework.

The paper is structured as follows: Section 2 defines hybrid
dynamical systems, while Section 3 formulates the estimation
problem. Section 4 introduces our approach for current mode
discernibility analysis, while Section 5 describes the complete state
set-membership estimation. Section 6 discusses method complex-
ity and convergence. Section 7 reports the numerical evaluation on
a realistic example, before conclusions.

2. Hybrid dynamical systems

Hybrid dynamical systems (HDS) canbe representedby ahybrid
automaton (Alur et al., 1995) given by

HA = (Q,Z,U,F, Inv, Σ, Ψ ,G,A), (1)

where: Q = {q} is a set of locations, i.e. discrete state or modes;
domain Z ⊆ Rn is the definition domain of the continuous compo-
nent with dimension n that may depend on q; domain U ⊆ Rnu

is the set of admissible control inputs; F = {fq} is the set of
non-autonomous differential equations characterizing flow tran-
sition in mode q, of the form

flow(q) : ż(t) = fq(z(t), u(t)), (2)

where fq : Z×U ↦→ Z is a nonlinear function assumed sufficiently
smooth over D ⊆ Rn; Inv is an optional invariant, which assigns a
domain to the continuous state space of each location:

Inv(q) : νq(z(t)) < 0, (3)

where inequalities are taken componentwise, νq : Z ↦→ Rm is also
nonlinear, and the number m of inequalities may also depend on
q; Σ is a set of exogenous events; Ψ = {ρe}e∈A is the set of reset
maps, taken as continuous nonlinear functions; G = {γe}e∈A is the
set of guard conditions of the form:

guard(e) : γe(z(t)) = 0; (4)

where γe(.) : Z ↦→ Rm′ is a nonlinear continuous function; A ⊆
Q × Q is the set of discrete transitions {e = (q → q′)} given by
the 5-uple (q, guard, sq, ρe, q′), where q and q′ represent upstream
and downstream locations respectively, sq ∈ Σ , ρe ∈ Ψ , and
guard ∈ G. A transition q→ q′ occurs when the continuous state
flow reaches the guard set, i.e. when the continuous state satisfies
condition (4).

Let us also consider the following measurement equation

output(q) : y(t) = µ⊤q z(t), (5)

where µq ∈ Rn×ny , depends on mode q.
Let us now recall the concept of hybrid trajectory (or hybrid

solution). Let us consider a finite time horizon [t0, tN ] and denote
χ (t0) = (q0, zq0 (t0)) the initial hybrid state. We can define as in
continuous dynamics,

zq0 (t; t0, χ (t0)) (6)

the continuous state vector solution of the initial value problem
(IVP) for the continuous ordinary differential equation (ODE) (2)
starting from the initial state vector zq0 (t0) at time t0 in mode q0.
A discrete transition e = q0 → q1 occurs when the continu-
ous flow trajectory intersects the guard set at time te, i.e. ∃te ≥
t0, γe(zq0 (te)) = 0. Then, the continuous state vector is reset as
zq1 (t

+
e ) = ρe(zq1 (t

−
e )). The switching sequence for HDS (2)–(5) may

be written in the general case ofM discrete transitions as

seq = {(t0, q0), (te1 , q1), (te2 , q2), . . . , (teM , qM )}. (7)

In fact, at each time instant t ∈ [t0, tN ], we can define the hybrid
solution trajectory of the hybrid system (2)–(5) starting from the
continuous state vector zq0 (t0) at t0 in the discrete mode q0 as

χ (t; t0, χ (t0)) =
(
qi(t), zqi(t)(t; tei , χ (tei; t0, χ (t0)))

)
, (8)

where tei is a switching time instant such that tei ≤ t ≤ tei+1 , ei ∈ A.
We can also define the HDS output by

yqi(t)(t; t0, χ (t0)) = µ⊤qi(t)zqi(t)(t; t0, χ (t0)) (9)

where zqi(t)(t) is the continuous component of χ (t). Now, let us
consider the set χ0 = Q0×Z0 of possible initial hybrid state χ (t0),
cartesian product of the set of possible initial discrete modes Q0
and the bounded initial domain Z0 of zq0 (t0) when in any mode
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