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a b s t r a c t

A global motion planning method is described based on the solution of minimum energy-type curves
on the frame bundle of connected surfaces of arbitrary constant cross sectional curvature ϵ. Applying the
geometric framing of Pontryagin’s principle gives rise to necessary conditions for optimality in the form of
a boundary value problem. This arbitrary dimensional boundary value problem is solved using a numerical
shootingmethod derived froma general Lax pair solution. The paper then specializes to the 3-dimensional
case where the Lax pair equations are integrable. A semi-analytic method for matching the boundary
conditions is proposed by using the analytic form of the extremal solutions and a closed form solution
for the exponential map. This semi-analytical approach has the advantage that an analytic description
of the control accelerations can be derived and enables actuator constraints to be incorporated via time
reparametrization. The method is applied to two examples in space mechanics: the attitude control of a
spacecraft with two reaction wheels and the spacecraft docking problem.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses themotion planning problemon the frame
bundle and isometry group of m-dimensional simply connected
surfaces of constant cross sectional curvature ϵ. The motion plan-
ner considered here deals with the case where ϵ is arbitrary with
frame bundle, coined here, the ϵ-group Gϵ . While according to
the Killing–Hopf theorem, any complete connected Riemann space
Mm,m ≥ 2 of constant curvature ϵ has a universal cover Sm,Hm or
Em and so the value of ϵ is usually set to 1, 0 or −1, we consider
ϵ ∈ [−1, 0) ∪ (0, 1] so that ϵ = 0 can be considered only as a
limiting case. This is useful in that for ϵ ̸= 0 the trace form is non-
degenerate and our optimal control problem reduces to solving an
identity derived from a Lax pair form. Moreover, a simple iterative
map can be developed from this identity to numerically solve for
the optimal solution g ∈ Gϵ . In the case ϵ = 0 no such Lax pair
form exists due to the fact that it has a degenerate bi-linear trace
form, but its solution can be considered in the limit.

The structure-preserving numericalmethod for solving optimal
trajectories in this paper can be applied to arbitrary dimensions
and for arbitrary curvature of the underlying space form (approx-
imately optimal in the case ϵ = 0 where we approximate it
by a very small number in part of the numerical integration). In
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addition, the paper specializes to the completely integrable 3-D
case where the extremal curves can be solved explicitly in terms of
elliptic functions. Furthermore, the exponential map used to solve
the boundary conditions is solved in closed-form for arbitrary ϵ.
This leads us to a novel semi-analytic formulation for solving this
class of optimal control problems on 3-D Lie groups for arbitrary
ϵ. Moreover, in the integrable case the velocities and acceleration
components can be derived from the analytically defined extremal
curves and as such time-parameterization can be used to ensure
dynamic feasibility of the kinematically feasible solution.

As we consider m-dimensional Riemann spaces, the isometry
group Gϵ will correspond to the groups SO(m + 1) (in the case
ϵ = 1), SE(m) (in the case ϵ = 0) and SO(m, 1) (in the case ϵ =

−1). The dimension of Gϵ is then n =
m(m+1)

2 . This paper initially
considers systems whose configuration space g ∈ Gϵ satisfies the
following differential constraint⎧⎪⎨⎪⎩ġ = g(

n∑
i=1

viAi)

g(0) = g0 and g(tf ) = gd.
(1)

The vectors [v1, v2, . . . , vn]
⊤

∈ Rn are continuous functions, g ∈

Gϵ , and A1, . . . , An is the basis of the ϵ-Lie algebra gϵ .
There are a plethora of applications that can be modeled by (1).

For example, the kinematics of various autonomous systems such
as the attitude kinematics (ϵ = 1, n = 3) of spacecraft (Biggs &
Colley, 2016; Maclean, Pagnozzi, & Biggs, 2014; Spindler, 1996),
including those with velocity constraints (Biggs & Horri, 2012)
and those under-actuated in control (Biggs, Bai, & Henninger,
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2017; Spindler, 1999). Systems such as wheeled robots, robotic
grippers and slender underwater vehicles that exhibit a sliding-
type constraint (ϵ = 0, n = 2 or n = 3) (Biggs & Holderbaum,
2009; Biggs, Holderbaum, & Jurdjevic, 2007; Bretl & McCarthy,
2014; Coverstone-Carroll, 1996; Dubins, 1957; Liu & Geng, 2014;
Mukherjee, Emond, & Junkins, 1997; Murray & Sastry, 1993) and
in wider fields such as switched electrical networks (Leonard & Kr-
ishnaprasad, 1994), problems of quantum control (D’Allessandro,
1993) and planning curvature- and torsion-constrained 3D printed
implants for facilitating radiation therapy (Patil, Pan, Abbeel, &
Goldberg, 2015). Various methods have been developed to tackle
the motion planning problem of left-invariant (respectively right)
systems defined on matrix Lie groups of the form (1) where it
is necessary to match the boundary condition g(0) = g0 and
g(T ) = gT . For example, theworks (Brockett & Dai, 1991;Murray &
Sastry, 1993) introduce the idea of solving non-holonomic motion
planning problems by expressing the control analytically in terms
of either elliptic functions (Brockett &Dai, 1991) or sinusoids (Mur-
ray & Sastry, 1993). The parameters of these analytic control func-
tions must then be computed to match the boundary conditions
imposed on the motion planning problem. While the method we
construct in this paper considers systems with non-holonomic
constraints, for the purposes of controls these systems are treated
as kinematic systems, i.e., the velocities are assumed to be directly
controlled or equivalently the dynamics of the system can be
perfectly canceled with the control. The distinction between these
systems and dynamic non-holonomic systems is detailed in Bloch
et al. (2003). In Spindler (1996), the author solves the necessary
conditions for optimality using Pontryagin’s principle and sug-
gests using a standard numerical shooting method to solve for the
boundary conditions via numerical integration. The paper (Leonard
& Krishnaprasad, 1995) applies classical averaging theory; they
produce sinusoidal controls that solve this motion planning prob-
lem with O(ϵp) accuracy in general, and exactly if the Lie algebra
is nilpotent. The projection to the group is determined in local
coordinates using theWei–Norman product of exponentials repre-
sentation and the Magnus single exponential representation. The
paper (Chitour, 2002) solves the problem for semi-simple and
compact Lie groups via a continuation method. The restriction to
a compact group is crucial to their handling, since the continu-
ation method requires that the Wazewski equation must have a
global solution. Lafferriere and Sussmann (1991) propose a general
strategy for solving (1)–(19) bymaking use of an extended system,
which comprises the original systemplus higher-order Lie brackets
of the system vector fields. The control which is determined by
such a system provides an exact solution of the original problem
if the given system is nilpotent or for the class of systems they
classify as ‘‘feedback nilpotentizable’’, and for all other systems
the solutions are approximate. The thesis (Baillieul, 1975) analyzes
the sub-Riemannian optimal control problems on SO(3) using a
variational approach, while Brockett (1973) and Jurdjevic (1997)
use the Pontryagin maximum principle. The work (Bloch, Crouch,
& Ratiu, 1994) analyzes the Hamiltonian structure of kinematic op-
timal control problems, particularly the sub-Riemannian optimal
control problems on compact semi-simple Lie groups and gives a
Lax pair form defining the necessary conditions for optimality for
the special case where Gϵ is the frame bundle of a Riemannian
symmetric space; in this paper, Gϵ is semi-simple and compact
only in the case ϵ > 0.

The general approach in this paper is to focus on a class of
optimal solutions to the motion planning problem. Moreover, in
addition to considering matching the boundary conditions the
following quadratic cost is imposed

J =

∫ tf

0

s∑
i=1

civi(t)2dt (2)

where s ≤ n the time tf is a fixed variable and ci > 0 are
constant scalar weights. Integrability of the extremal equations for
an optimal control problem of this type has been detailed in Bloch
et al. (2003).Minimizing the cost (2) leads us to solve the system (1)
as an optimal control problem, using the geometric framing of Pon-
tryagin’s maximum principle. However, the boundary conditions
are not contained in the cost function and to match them specific
values of the initial conditions of the extremal curves have to be
computed. In this paper we derive an identity from the general Lax
Pair solution that arises from this optimal control problem on Lie
groups and use it to construct an iterative approach to solve the
motion planning problem for prescribed boundary conditions. The
approach has the advantages over previousmethods as (i) it gener-
alizes to a large class ofn-dimensional systemswith a left-invariant
differential constraint defined on the frame bundles of spaces of
arbitrary constant cross sectional curvature. (ii) It does not require
any analytical approximation methods such as averaging. (iii) The
curve g(t) on the group is a global, co-ordinate-free solution. This
means that the method avoids singularities and the un-winding
problem that can be encountered when parameterizing the group.
(iv) The derived numerical shooting and integration method used
for matching the boundary conditions preserves the first integral
and the structure of the group.

The last section of the paper specializes to the completely
integrable 3-D case for arbitrary ϵ. For the case where the optimal
control problem lifts to a quadratic Hamiltonian a general solution
to the extremal curves are explicitly solved in terms of Jacobi
elliptic functions. Furthermore, a closed-form solution of the ex-
ponential map is derived which allows the construction of a semi-
analytical shooting method. Due to the semi-analytical nature of
this case the required velocities, accelerations and controls can also
be constructed analytically. The integrable cases, therefore, lend
themselves to the possibility of time-parameterization which can
be used to ensure dynamic feasibility in practical problems. To this
end the method is applied to two problems in space mechanics (1)
the slewing of an underactuated spacecraft using only two reaction
wheels and (2) a spacecraft docking problem where the spacecraft
can only thrust in the forward and backward directions of the
body-fixed frame and it must rotate to point the thrusters in the
required direction in inertial space.

2. Optimal trajectories ofminimum-energy typeon the ϵ-group

This section presents background to the geometric framing of
Pontryagin’s principle for the m-dimensional ϵ-group and some
well-known properties of Gϵ and its Lie algebra gϵ (Section 2.1) as
well as the form of the Lax pair equations for the n-dimensional
case. A novel identity is constructed expressing the extremal
curves on the Lie algebra gϵ in terms of the curve g(t) which holds
for all ϵ values (ϵ = 0 is approached as a limiting case as ϵ → 0).
This identity is then used to construct a simple iterative method
alongside a first-order Lie symplectic Euler scheme to determine
the initial extremals that are required to match the boundary
conditions on the group.

2.1. Background

Here we review some known facts of optimal control on matrix
Lie groups and facts about the ϵ-Lie algebra and fix notation. Refer-
ences used are Bloch et al. (2003, 1994), Judjevic(2005), Jurdjevic
(1997, 2001) and Jurdjevic and Sussmann (1972).

Given thematrix g ∈ Gϵ , and defining them+1×m+1matrix
Jϵ = diag(1, . . . , 1, 1

ϵ
), then for all integer ϵ,

1. gJϵg⊤
= Jϵ

2. det(g) = 1.
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